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Sur le manque d’expressivité des réseaux de neurones et la résolution du problème
de manière optimale
Mots clés: apprentissage profond, réseau de neurones, accroissement d’architecture
en un coup, accroissement d’architecture à partir du gradient, optimisation sous
contrainte, méthode d’approximation de rang faible

Résumé: Cette thèse propose une stratégie
originale d’accroissement d’architecture de
réseaux de neurones en un coup, c’est-à-dire qui
optimise conjointement l’architecture du réseau
et ses paramètres. Cette méthode s’appuie
sur une nouvelle métrique appelée le Manque
d’Expressivité, qui associe à un emplacement de
l’architecture du réseau actuel, son incapacité
à suivre sa dérivée fonctionnelle. Il est montré
que cette incapacité, ou Manque d’Expressivité,
peut être résolu de manière optimale par l’ajout
de neurones appropriés. Ce faisant, la résolu-

tion du manque d’expressivité fournit des outils
et des propriétés pour développer une architec-
ture à partir d’un très petit nombre de neu-
rones. Ces travaux prouve, théoriquement et
empiriquement, que les techniques de croissance
basées sur cette métrique convergent vers une
expressivité totale, et que si le rôle du gra-
dient fonctionnel est explicite et majeur dans
l’expression du Manque d’Expressivité, il est
montré que ce rôle est aussi, implicitement,
important dans d’autres stratégies récentes de
recherche d’architectures neuronales.



Title: Spotting expressivity bottlenecks in neural networks and fixing them optimally
Keywords : deep learning, neural architecture search, one-shot techniques, gradient-
based method, constrained optimization, low-rank approximation

Abstract: This thesis introduces a one-shot
Neural Architecture Search strategy that jointly
optimizes a network architecture and its weight
using a new metric named the Expressivity Bot-
tleneck. This metric associates a location of a
network architecture to its lack of expressivity
by quantifying the ability of the network to fol-
low its functional gradient. It is shown that this
lack of expressivity can be solved optimally by
adding suitable neurons, hence providing tools

and properties to develop an architecture start-
ing with a very small number of neurons. This
works proves, theoretically and empirically, that
growing techniques based on this metric con-
verge to full expressivity and that if the func-
tional gradient plays an explicit and important
role in the expressivity bottleneck metric, it
is shown that it also plays, implicitly, an im-
portant role in other recent neural architecture
search strategies.
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1 Introduction

« On the basis of [...] the speed with which the research in [Heuristic Problem
Solving] is progressing, we are willing to make the following predictions, to be
realized within the ten years:
That within ten years, a digital computer will be the world’s chess champion unless
the rules bar it from competition.
That within ten years, a digital computer will discover and prove a new important
mathematical theorem.
That within ten years, a digital computer will write music that will be accepted
by critics as possessing considerable aesthetic value.
That within ten years, most theories in psychology theory will take the form of
computer programs, or of quantitative statements about the characteristics of com-
puter programs. »

Herbert A. Simon and Allen Newell, Heuristic problem solving (1957)

On November 14, 1957, at the banquet of the Twelfth National Meeting of
the Operations Research Society of America, Herbert A. Simon and Allen Newell
predicted well the technological leap that was about to start with Artificial In-
telligence. The predictions of their paper Heuristic problem solving [Simon and
Newell, 1958], as stated in the introduction of this thesis, would come true start-
ing from 1996 as the supercomputer DeepBlue defeats the world chess champion.
Since that date, research in Artificial Intelligence has been enjoying growing en-
thusiasm, moving from symbolic AI to statistical learning or Machine Learning
(ML) techniques, which have permitted to tackle more abstract and complex tasks
such as image and music generation, reasoning in games, etc.

Among all existing ML models, the neural networks stand out as they can be
applied to a wide range of problems. Its story begins in 1958, one year after this
citation, in an article proposed by psychologist F. Rosenblatt on the basis of the
human brain. At this early stage, a neural network is mainly defined by its “ar-
chitecture”, and its performance is enhanced by training through an “optimization
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Chapter 1. Introduction

process”. Over the years, the definitions and settings of each of those two concepts
have become so complex that they have become an important research field by
themselves. In particular, considering the now usual optimization process of the
network parameters, that is, gradient descent, it is acknowledged that the final
performance of the network is tightly related to the network architecture, which
has to be carefully chosen when considering one task or another. Indeed, novel
and ingenious architecture designs often enhance the trainability of networks and
better incorporate physics and human knowledge in task modeling, leading in ei-
ther case to improvement in the network final performance. Constructing suitable
architectures has long been to engineers and researchers a painful occupation, but
new techniques that remove the human from this building loop are taking shape.
This thesis falls into this new research field, that is, Neural Architecture Search
(NAS).

For the non-expert readers that are more curious about NAS, I propose here
an unambiguous analogy :

Suppose that God’s apprentices would like to
have a personal chef and decide to create it. To
do so, they need to assemble parts of the human
body into a human puppet, which will be trained
to cook. Considering all possible layouts of the
body sections, they try a first idea and place the
hands on top of the head. After several hours
of training, they observe, quite embarrassed, that
their puppet is incapable of cooking the simplest
recipes. One apprentice suggests that this fail-
ure might be linked to the puppet’s inability to
see its actions while using its hands. Considering
this remark, they decide to revise the joining of
the puppet and restart the training...

Figure 1.1: The chef by the
apprentices.

Replace the action “assemble the parts of the human body” by construct the
architecture of a neural network, and the apprentices become a computer program
of some researchers in the NAS field.

In this analogy, we recognize a well-known optimization process called trial and
error that, in NAS, is the repetition of the following : build an architecture, train
it, and evaluate its performance. However, this way of proceeding distinguishes
the search of the architecture from the training of the architecture itself, and is by
construction time demanding because it requires training multiple architectures.
An alternative would be to jointly optimize the architecture and its weights, that
is, we would construct the chef and train it to cook at the same time. Such
NAS techniques exist and they are called one-shot methods. In fact, they are
called like that because, inversely to the latter optimization procedure, only one
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architecture is trained during the overall search. There exist few such techniques in
the literature, and most of them have been designed in the past five years. Within
this manuscript, we complete this family of one-shot techniques with an original
method and also prove that two existing ones fall into this formalism.

The NAS technique presented in this manuscript achieves the joint optimization
of a network architecture and its weights using a new metric, the Expressivity
Bottleneck. This metric associates a part of the network architecture to its lack
of expressivity and naturally yields updates of parameters as well as architecture
expansions to reduce such lack of expressivity. The technique avoids redundancy
in the network by proposing extensions of architecture that are orthogonal to the
achievable function space defined by the current network, and this, using the by-
product of the gradient descent. This latter property allows this growing technique
to be performed at the same time as the standard gradient descent training of the
network. Each architecture modification, as well as their potential utility for the
network, can be computed cheaply and in a close form from backpropagation, hence
providing tools and properties to develop an architecture starting with a very small
number of neurons. Growing techniques based on this metric are successful as we
prove, theoretically and empirically, that they converge to full expressivity for any
given dataset.

This thesis is composed of six chapters where the first and the last ones are,
respectively, the introduction and the conclusion of this manuscript. The literature
review is in Chapter 2 and has been divided into two main sections; in the first
part, we present the NAS field, and in the second part, we introduce methods to
evaluate the expressivity of a network given its architecture. The methods from the
second part of the literature review might be empirical or mathematical metrics,
and are to provide a baseline comparison for our metric Expressivity Bottleneck,
as much on its mathematical definition than as on its ability to be computable.

In Chapter 3, we bridge the gap between the concept presented in the latter
chapter by introducing the Expressivity Bottleneck metric, its properties, and how
it applies to the NAS field.

In Chapter 4, we revisit two NAS techniques with my formalism.
Finally, in Chapter 5, we construct a naive NAS strategy using the Expressiv-

ity Bottleneck metric, to show on multiple reference datasets that such strategy
matches large neural network accuracy, with competitive training time, while re-
moving the need for standard architectural hyper-parameter search.

A part of this manuscript has been published in the TMLR journal [Ver-
bockhaven et al., 2024]. The corresponding sections are indicated with the

icon next to their titles.
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Chapter 2. Literature review

In this chapter, we present the literature review on Neural Architecture Search
(NAS) and on the notion of expressivity for neural networks.

In the first section, we present NAS, a research field that focuses on the con-
struction of the architecture of neural networks; we start by defining its main con-
cepts, which are the search space, the search strategy, and the evaluation strategy
(Section 2.1.1), then, we go into more details for each of those concepts by listing
the different types of search spaces and search strategies found in the literature
(respectively Section 2.1.2 and Section 2.1.3).

In the second section, we provide several definitions of the notion expressivity
and link it with the usual definition of performance. In the first part (Section 2.2.1),
we present in more detail the evaluation strategy, which will have been defined in
the previous section, and which regroups the empirical methods to evaluate the
performance of a network without using the usual gradient descent; then, in a
second subsection (Section 2.2.2), we present the mathematical tools known in the
literature to define expressivity. In particular, we present the Vapnik–Chervonenkis
dimension, the Rademacher complexity, the information bottleneck, and the Kol-
mogorov complexity, and how they apply to neural networks.

2.1 Neural architecture Search (NAS)

Neural Architecture Search (NAS) first arises as a subfield of AutoML, which
aims to automate all pipeline steps in Machine Learning processes. In particular,
it shares many of its concepts and definitions with hyper-parameter optimiza-
tion (HPO) if we consider the network architecture as a hyper-parameter itself.
However, HPO and NAS techniques are rather different as they optimize vari-
ables of different kinds. In HPO, the optimized variables lie within well-defined,
low-dimensional, and non-complex spaces, making its algorithms ill-adapted to
the optimization of the complex and high-dimensional space that is the space of
architectures.

The research in NAS started a long time ago with genetic and evolutionary
methods, but recent work starting from 2015-2017 gave a fresh impetus to the
field, leading to an increasing number of papers per year (cf. Figure 2.1). Different
formulations with their inner logic have been developed, and we will present and
summarize those in the following sections.

We start by introducing the main definitions and concepts in Section 2.1.1, and
we go into more detail for each of those concepts in Section 2.1.2.

2.1.1 Definitions

Formally, NAS can be formulated as follows : consider a task T with the dataset
X separated into the training and the validation sets, and a set of architectures A,
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Figure 2.1: Number of NAS papers by year [Deng and Lindauer, 2023]

we would like to solve :

argmin
A(.)∈A, θ∈Rd(A)

Ltrain(A(θ)) (2.1)

where the loss Ltrain evaluates the performance of the network A(θ) on the training
set and d(A) is the dimension of the parameters of the architectureA. Usually, this
optimization problem is reformulate as a two-step optimization problem where we
search for the best architecture in A while the value of its parametrization θ∗ has
been fixed by minimizing the training loss for that specific architecture. Formally,
Equation (2.1) is equivalent to :

argmin
A∈A

Ltrain(A(θ∗)) s.t. θ∗ := argmin
θ

Ltrain(A(θ)) (2.2)

However, as the training set is used twice, first to estimate the best parametriza-
tion θ∗ and the optimization of the architecture within A, the solution of such
optimization problem would overfit the training set, and one would observe a drop
in accuracy when measuring the performance on the validation test. This overfit
can be mitigated either by increasing the training dataset or by performing one of
those optimization problems on the validation set. For example, instead of solving
Equation (2.2), one could solve the following minimization problem:

argmin
A∈A

Lval(A(θ∗)) s.t. θ∗ := argmin
θ

Ltrain(A(θ)) (2.3)

where the loss Lval evaluates the performance of the network A(θ) on the valida-
tion set. This formulation can be slightly modified to direct the search toward a
preferred subspace of A, for example, by adding constraints on the size of A or a
limit of time to compute the search.
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Depending on the type of knowledge is used to solve Equation (2.3), we differ-
entiate three types of NAS : the from scratch, the meta-learning and the transfer-
learning methods. If a method solves Equation (2.3) using knowledge from match-
ing duos of (dataset, architecture) that are not T , we are in the meta-learning
or transfer-learning setting. Reversely, if the construction of the architecture is
specific to the task T and is performed using only information from task T (for
example its associated dataset), we are instead in the from scratch setting. We can
remark that the strict distinction between the from scratch and meta or transfer-
learning is in fact incorrect because a from scratch method always implicitly uses
knowledge from tasks other than T . For example, it might focus its search on the
attributes of known and workable architectures (convolutional layer, normalization
layer, max-pooling). However, we consider that such use of exterior knowledge is
minor compared to what can be done in meta-learning or transfer-learning where,
for example, a neural network with multiple layers can be first trained to solve a
task T̃ , and then partially retrained for task T . For the rest of this thesis, we focus
on the from-scratch search, as is our technique, and set aside the meta-learning
and transfer-learning search.

We identify three main concepts which distinguish NAS techniques from one
another: the search space, the search strategy and the evaluation strategy
[Elsken et al., 2019, White et al., 2023]. We first give a general definition of those
concepts and specify their diversity in the next sections.

≜ the search space defines the set of possible architectures A in which the search
will be performed. It is chosen with prior knowledge of the given task and
dataset to save time and energy searching in what is widely acknowledged as
well-functioning architectures. In general, a large search space is more likely
to give a better solution for Equation (2.3) but also tends to increase the
search time within A.

≜ the search strategy defines the exploration within A toward the solution of
Equation (2.3). We distinguish three types of search: the random method,
the informed random search (reinforcement learning, Bayesian optimization,
neuro-evolutionary), and a more recent category, the one-shot methods. The
informed random search differ from the random ones because they use knowl-
edge to orient the search within A. This knowledge is usually a concatenation
of all the returns of the evaluation strategy that is called at each increment
in A. The last category of one-shot methods, to which our method belongs,
does not distinguish the evaluation strategy from the search strategy: it per-
forms architecture modifications while optimizing the current architecture.
This joint optimization often induces a shorter time of search within A.

≜ the evaluation strategy estimates the performance of a given architecture A,
that is Lval(A(θ∗)) of Equation (2.3). This information is then sent and
processed by the search strategy to continue and guide the search within
A. A straightforward and classic evaluation strategy is to train the overall
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2.1. Neural architecture Search (NAS)

Figure 2.2: Graph of operation of NAS methods White et al. [2023]. A set of
possible architectures A is chosen. A starting architecture A is drawn from A
to encode a neural network N . The performance of N is then evaluated and is
processed by the search strategy, which might draw another architecture A from
A.

architecture A until convergence by usual gradient descent. Although tech-
niques exist to shorten the computational time of such evaluation, this step
is always the most costly operation in NAS. As stated above, for one-shot
methods, the evaluation strategy is either non-existent or estimates a proxy
of this quantity without further training.

In the following sections, we will present in more detail the search space and
the search strategy. Although the evaluation strategy is tied to those two con-
cepts, its presentation has been grouped with the literature review on expressivity
(Section 2.2.1), as it can be seen as an empirical technique to estimate the expres-
sivity of a network.

2.1.2 The search spaces : The chain-structured, the cell-based and
the hierarchical search space

The chain-structured set of architectures is the simplest and historically the
oldest one to be found in the literature. Each structure in the set is organized
as a file of ordered layers, where a layer is a composition of a linear application
and a non-linear function. The layer at position k + 1 in the line takes its inputs
from a subset of the outputs from the previous layers. In this setting, the set of
architectures A is firstly defined by the possible variations of the macro-structure,
which is the number of layers in the line and the set of indices from which each
layer takes its inputs from [Kandasamy et al., 2018b], then, by the variations of
the micro-structure, that is the type of operation at each layer [Ramachandran
et al., 2018], [Chollet, 2017] and the hyperparameters of each operation [Wenzel
et al., 2020]. Remark that searching for the micro-structure can be performed
exhaustively as the set of possibilities for the operations (relu, soft step, hyperbolic
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...

Figure 2.3: Example of a chain-structured architecture. Each layer lj takes its
inputs from the incoming arrows.

tangent, etc.) and the settings of most of the hyper-parameters (kernel size, strides,
presence of the bias, etc.) is of finite and relatively small cardinality while searching
for the best macro-structure requires to optimize a combinatorial problem and is
an issue at the very heart of the NAS research field.

Another popular and more recent search space is the cell-based search space
where, as before, two optimization levels can be defined, micro / macro structure,
but they are of another kind. The micro-architecture is instead called a cell and is
a chained-structured architecture, while the macrostructure is the number of cells
and the set of connections from one cell to another. Usually, the search focuses on
the construction of the cell, while the macro-structure is fixed in advance and is
often a simple graph. By construction, this type of architecture has recurring mo-
tifs, which have proved to be a nice property in many human design architectures
such as ResNet, U-net, Transformers, etc. To reduce the time of the search for
large and complex datasets, a set of best cells is pre-selected with a small and task-
similar dataset such as CIFAR-10 for vision, or TIMIT for speech recognition [Liu
et al., 2019, Zoph et al., 2018, Mehrotra et al., 2021], and only those selected cells
are evaluated on the final dataset. However, this two-level optimization process
mainly focuses the search on the micro-level, implying supplementary human bias
or important amount of by-hand optimization work for the macro-level. This extra
work can be avoided by the last category of search space, which is the hierarchical
search space.

The hierarchical search, first introduced by Liu et al. [2018], enlarges the binary
vision macro vs. microstructure by considering a spectrum of levels that are defined
recursively. In the papers [Liu et al., 2018, Chrostoforidis et al., 2021], each cell
of a specific level is a graph of cells from the preceding level. In the paper [Ru
et al., 2020], the same logic applies with the small difference that the most nested
level defines the hyper-parameters of the basic operations. Remark that other
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hyper-parameters being equal, this hierarchical search space covers the cell-based
search space as soon as more than two levels are considered.

2.1.3 The search strategy

Considering a task T associated to the dataset D, we note f ∗ the function such
that for all elements (x,y) following the law distribution of D, we have f ∗(x) = y
(supposing a deterministic task and no labeling error). A simple search strategy to
approximate f ∗ with a neural network would be to take a random but huge feed-
forward network and train it by gradient descent. Indeed, such a network enjoys
two nice properties regarding its generalization error and the optimization of its
parameters. The first aspect is provided by the universal approximation theorem
by Hornik et al. [1989] and indicates that, upon some weak assumptions, the func-
tional space described by the variation of the parameters of such an architecture is
large enough to be close to any function f ∗. The second property comes from the
NTK theory by Jacot et al. [2018] and ensures that following the gradient descent
will guide the parameters of that network toward a good minimum in the func-
tional space. Those two properties are illustrated in Figure 2.4. While choosing a
reasonable order of magnitude to translate the quantification “huge architecture”,
this method is always feasible. Furthermore, it is common practice to reduce the
size of such a network once it has been trained, using pruning techniques that
iteratively remove the useless parts of the network according to a mask, or other
compression techniques (tensorization, quantization, distillation). However, for a
new and complex task, the quantification of “huge” is often incorrect, and with-
out any ingenious searching technique, the architecture search rapidly resembles a
trial and error process which is memory inefficient and time-consuming, especially
when dealing with high-dimensional data (images, videos, songs, text). In those
settings, we might use more complex techniques that belong to the NAS search
strategy field, which permit us to always work with small and manageable archi-
tectures. In the next sections, we describe those techniques that we have organized
into two main categories : probabilistic techniques and one-shot strategies. We
briefly summarize the probabilistic techniques, and we go into more detail for the
one shot, which is the category this thesis belongs to.

Probabilistic techniques : from brute force to informed random searches

We name the probabilistic methods the strategies that use random distributions
as the main indicators to search and move within A. Among the literature, we
distinguish three different methods in this category: the neuro-evolutionary, the
reinforcement learning, and the sampling and Bayesian optimization methods. In
each of those, there exists a continuum of techniques going from random and brute
force approaches to more sophisticated and clever ones, named here informed ran-
dom approaches. Regarding all other search strategies, the random methods are
the most straightforward and, in research papers, are considered a weak baseline
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Figure 2.4: Optimization of the parameters of a network with a fixed and “huge”
architecture A. The pink shape defines the space of parameters of the architecture
A, and the blue shape represents the corresponding functional space. Each point in
the pink shape can be paired to a point in the blue shape. Note that many different
parameters θ yield the same fθ, for example by considering some permutations
of θ. The pink arrows indicate the path followed by the parameters during the
gradient descent, and the blue arrows describe the induced functional changes.
The parameter θ0 is the starting parameter of the gradient descent procedure,
and fθ0 is the corresponding neural network function. At the end of the gradient
descent procedure, the parameters of the network are equal to θ̂∗, and using the
approximation theorem and the NTK, we have the property that under certain
assumptions the corresponding function fθ̂∗ is close to fθ∗ which is itself close to
f ∗.
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with which to be compared. This does not hold true for informed random meth-
ods, which are more subtle and challenging to implement as they use conditional
random distributions where the knowledge of past explorations is somehow pro-
ceeded while exploring A.

Neuro-evolutionary. Historically, neuro-evolutionary methods were the first
ones to be developed to search for neural network architectures and, at a time
when computing the gradient was costly Zhang et al. [1993], its inner logic was
also used to update the weights of the network. Neuro-evolutionary methods op-
erate on representation (genotype), which can be mapped to a neural network
(phenotype) to be evaluated on some task to derive its fitness. A fitness function
summarizes the performance of a network into one real number and guides the
neuro-evolutionary algorithm toward the solution. The evolution process is as fol-
lows: take a population of genotypes, i.e., model - use sample parents from this
population to get offspring by applying mutations to the parents. Those models
are then trained, evaluated, and added to the population (cf Algorithm 1). Neuro-
evolutionary methods differ from each other in how they encode the genotype,
perform the mutations, sample parents, update the population, and evaluate the
fitness. The encoding of a genotype can be direct [Yao and Liu, 1997, Stanley,
2007], that is, each connection and weight value can be mapped from the genotype
to the network, or indirect [Stanley et al., 2009, Miikkulainen et al., 2017] that
is the encoding is rather a program which indicates how to build the topology of
the network and initialize its weights. If the direct encoding is straightforward
and easy to implement, indirect encoding is compact and leads to an alternative
exploration of A as the set of possible mutations and crossovers is highly precondi-
tioned by the encoding. Usually, the cardinality of the population stays constant
during the process, and some individuals are killed or discarded. They are often
the worst-performing individuals, but they can also be the oldest to favor diversity
and the spread of newer individuals [Real et al., 2018]. There exist other tech-
niques to favor diversity in the population, as in the paper Stanley [2007], where
individuals with similar genomes share their fitness payoff, which allows different
structures a chance to optimize in their own niches. Neuro-evolutionary methods,
like reinforcement learning methods, are very costly when the data lies in a high-
dimensional space but seem to perform better than random search on the classic
vision datasets MNIST, CIFAR-10 [da Silveira Bohrer et al., 2020] and ImageNet
[Real et al., 2019].

Reinforcement Learning (RL). In reinforcement learning techniques, an
agent explores and exploits its environment by taking actions that change its state
and make it pocket a reward. The different actions are chosen according to the
policy π, that is, the probability of performing an action knowing the current state.
The objective is to find the policy π∗, which maximizes the expected reward of the
agent, that is, the weighted sum of the expected future rewards. Different modeling
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and optimization processes enable RL to answer NAS optimization problem as for-
mulated in Equation (2.3). Most of the time, the agent is rather called a controller
and is a recurrent neural network that generates new architectures by a mapping
from a fixed length vector [Baker et al., 2017] or transforms an existing network
by either increasing its depth or the size of an existing layer [Cai et al., 2017]. The
reward is often equal to the validation accuracy of the sampled network after it has
been (partially) trained. The architecture generation is enhanced by updating the
parameters of the controller by gradient descent, which is in the RL jargon named
the direct policy search strategy, using the Q-learning logic [Zhong et al., 2017,
Baker et al., 2017, Cai et al., 2017] or the proximal policy optimization [Schulman
et al., 2017] (8-10 days with 10 GPUs for CIFAR-10 dataset). Compared to the
other strategies, reinforcement learning applied to NAS is a recent practice. In
fact, solving Equation (2.3) in terms of RL is so resource-demanding that these
strategies have only been considered with the emergence and mainstream use of
large-scale parallelization.

Sampling and Bayesian optimization. Sampling techniques consist in gen-
erating architectures and evaluating their performances until an architecture with
sufficient performance is found. Most sampling techniques come from the HPO do-
main and, when they are naive, are ill-conditioned and time-consuming for search-
ing into the space of architecture. Nonetheless, for the low-complex tasks and
rather small datasets, those naive techniques achieve competitive results, as in
Yu et al. [2020] and Li and Talwalkar [2019], which reach almost state-of-the-
art results on CIFAR-10 dataset using a grid-search technique for sampling the
architecture (within 9.7 GPU days for Li and Talwalkar [2019]). Sampling tech-
niques can be upgraded by exploiting the knowledge of the performance of past
explorations when sampling new architectures; in that case, one speaks about
Bayesian Optimization (BO). Those techniques interpolate performance for un-
seen architectures, assuming regularities in their function form, and in doing so,
they propose further interesting potential designs to sample. The function form
of the performance is given by the acquisition function ϕ, which makes a trade-off
between the exploration of the unexplored subspace of A and the exploitation of
well-working and known designs. This function is approximated by a surrogate
with the current population of visited architectures. The arg max of the surrogate
is chosen as the next architecture to sample; it will be trained and added to the
population, enhancing the next estimations of ϕ (cf. Algorithm 2). BO techniques
differ from one another by the nature of the acquisition function, how they choose
the surrogate, and how they encode the space of architectures. The most popu-
lar acquisition function is the expected improvement, and although other function
forms exist, White et al. [2019] have shown that changing that criterion will not
affect much the final performance of the search. The surrogate is often a Gaus-
sian process [Bergstra et al., 2011, Kandasamy et al., 2018a] or a Bayesian neural
network [Springenberg et al., 2016] which predicts a confidence interval for the
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Algorithm 1: Pseudo-code for neuro-evolutionary search
Data: Data ≜ {xi,yi}i
Randomly sample an initial population;
for individual in the initial population do

Train the individual and evaluate its fitness;
end
for t=1, ..., T: do

Selection: Individuals are selected for reproduction;
Crossover: The selected individuals mate and produce offspring;
Mutation: The offspring undergoes random mutations;
Train the new individuals and evaluate their fitnesses;

end

Algorithm 2: Pseudo-code for Bayesian optimization search
Data: Data ≜ {xi,yi}i, an acquisition function ϕ(.), a surrogate
Randomly sample a set of architectures ;
for A in the initial set of architectures do

Train A and evaluate its performance;
end
for t=1, ..., T : do

Train the surrogate model to fit ϕ with the current population ;
Select the architecture A that maximizes the surrogate ;
Train A and add it to the population;

end
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performance of each point of A. The encoding of the architecture modifies the
writing and the estimation of the surrogate as it transforms the topology of the
architecture space as being the input of the surrogate function. It can be defined
by the adjacency matrix which indicates if node i is connected to node j or the path
adjacent matrix [White et al., 2019] or a projection on a low-dimensional space
with an auto-encoder [Luo et al., 2018]. BO methodology can be mixed with other
approaches as in Cai et al. [2017], which designs a pseudo-metric “OTMANN” to
estimate a Gaussian process surrogate and uses evolutionary search to mutate and
explore A starting from the architecture with the highest surrogate value.

One-shot and gradient-based. One-shot methods, unlike black-box optimiza-
tion search, use only one model and perform only one training over the search in
the space of architectures A. They develop a unique architecture and enhance its
performance simultaneously, removing the distinction between optimizing in A and
optimizing the setting of a specific A in A. Their double optimization processes
usually rely on the information extracted from backpropagation; hence, they are
also nicknamed gradient-based methods. Compared to the previous section, each
method has its inner logic, and instead of defining subcategories, we instead de-
scribe each technique from the furthest to the closest one of our method. For each
of those techniques, I created a little scheme which identifies the method.(

±1
·

±1

)
7−→±1 Faithful representation (not gradient-based, no training)

For sign vector inputs and one-dimensional sign vector outputs, the authors of
paper Mezard and Nadal [1989] propose a method to add layers and they prove
that this method converges to a zero system error on the training set. Each layer
is built brick by brick, adding neurons until the internal representation of the in-
puts at this layer is said to be faithful (▲); that is, any couple of inputs with
distinct outputs have distinct internal representations. Once the layer L is faith-
ful, they propose a nice initialization using the pocket algorithm, which, coupled
with this property, construct the units of the next layer, L + 1, whose first unit
produces at least one fewer error than the first unit of last layer L. If the error
is non-zero, the size of layer L+ 1 is again increased until it is faithful, restarting
the process in (▲). Repeating this logic, they achieve zero error in the training af-
ter a finite number of steps. There is no generalization property for this algorithm.( {0,1}

·
{0,1}

)
7−→
( {0,1}

·
{0,1}

)
Universal neural Net (not gradient-based).

For binary inputs with multidimensional binary outputs, the paper Chang and
Abdel-Ghaffar [1992] proposes a method to increase the size of a one-hidden layer
network by adding iteratively and one by one new hidden neurons. The method
is proved to converge to zero loss on the training set and can be performed in-
dependently of gradient descent, in the sense that this convergence property still
holds if gradient descent steps are performed between each neuron addition. The
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initialization of each added neuron is such that it divides by four the loss value
for one dimension of the output of the worst example while not changing much
the prediction and (a fortiori) the associated loss for the other examples and di-
mensions. The neuron addition multiplies the overall loss by at least a constant
factor equal to 1 − 1

2PM
where M is the dimension of the output, and P is the

size of the training set. This result rests on the monotony and boundedness of
the activation functions and the binary aspect of the input /output; hence, the
extension of this method to float inputs does not hold. The proof of convergence
of this method does not use any gradient-based argument but rather the loss value
of the examples, however, the paper concludes with a note on a gradient-based
proposition, which is a forerunner for the GradMax method [Evci et al., 2022],
another one-shot strategy that is described below. It proves that initializing the
fan-in weight of the new neuron with their initialization while setting its out-fan
weights to zero does not change the overall loss while boosting the gradient descent
as the gradient according to the zero-out-fan weights is strictly different from zero.
Certainly, applying gradient descent after this process permits a decrease in the
loss, but this gradient-based argument does not prove the convergence to zero loss.
As the previous method, there is no generalization property for this algorithm.

We now describe four recent and gradient-based methods that can be applied
to float vector inputs and outputs. Compared to the previous methods, they do
not create the overall architecture and are not proven to converge to zero loss on
the training set. Nonetheless, they achieve competitive results on two major visual
recognition tasks, which are CIFAR-100 [Krizhevsky et al., 2009] and ImageNet
[Deng et al., 2009].

¢≏¢ DARTS an example of supernetwork
We start this section by presenting the DARTS methodology [Liu et al., 2019] that
is based on supernetworks. A supernetwork is a huge network containing all the
architectures of the search space A, and where each specific architecture of the
search space can be retrieved by selecting a sub-graph of the supernetwork. The
methods defined with a supernetwork aim at finding an appropriate sub-graph by
eliminating the unnecessary connections of the supernetwork [Saxena and Verbeek,
2016, Bender et al., 2018, Liu et al., 2019]. The main advantage of using a super-
network is that its training evaluates all the architectures of the search space at
the same time and that such a training time depends linearly on its number of pa-
rameters; while training each architecture of the search space independently has a
training complexity that grows exponentially with the total number of parameters
of the biggest architecture 1. The most well-known example of a supernetwork

1Consider a search space where each architecture can be obtained by choosing k connections
among n. If an architecture with k connections has a training time complexity proportional to

k, then, training all the architectures of the search space has a time complexity of
∑

k

(
n
k

)
k =

31



Chapter 2. Literature review

is DARTS, whose methodology is now detailed. In DARTS, the search space is
cell-based, and the strategy is to learn the connections and activation functions
between pre-constructed cells by gradient descent. We note that the learning of
the connections and the activation functions is not differentiated, as the activation
functions are searched in a finite set, which includes the null function. The method
starts from a fixed skeleton of cells, where the connections between the cells are
multiple, and each cell takes as input a weighted sum of the different activation
functions whose weights are learned by gradient descent. At the end of training,
the smaller weights of the activation functions are set to zero, defining, therefore,
the final architecture of the network.

Firefly
A second one-shot and gradient-based method is the firefly gradient descent from
paper Wu et al. [2020]. This technique starts from a tiny architecture that out-
puts the function f , and at each loop of the search strategy, it replaces the cur-
rent architecture with an augmented one whose output function is ∥ε∥ close to
f , where ε is a vector. This new architecture is searched inside a set of func-
tions, ∂(f, ε), where each function of the set resembles the current architecture
but where its neurons have been divided into two neurons, and new neurons
as well as skip connections have been added to the structure. Let δsplit and
δnew be some vectors and ε = (εsplit, εnew), then the separation of a neuron de-
fined by n : x → σ(θTx), is the replacement of such a neuron with the func-
tion nsplit : x → 1

2

(
σ((θ + εsplitδsplit)

Tx) + σ((θ − εsplitδsplit)
Tx)

)
; the addition of

one neuron is defined as the concatenation of a new neuron whose function is
nnew : x → εnewσ(δ

T
newx) to a specific layer. The addition of skip connections is

defined using the same logic as the addition of neurons. The optimization inside
∂(f, ε) is done first by an optimization on (ε, δ) with a ℓ2 constraint on the vector
ε, then it is followed by an optimization on ε with a ℓ0 constraint on ε. The con-
straints ℓ2 and ℓ1 on ε through the optimizations ensure that the new architecture
is ε close to the previous one. The global search strategy is then defined by the
alternation between the classical optimization of the parameters of the current
architecture with the usual gradient descent and the replacement of the current
architecture with an ε close architecture.

We now present two methods that expand a network by increasing the size of
its current layers. Those methods start with a well-known architecture, for exam-
ple, a ResNet, but with fewer neurons by layer, then they iteratively increase the
layer sizes by adding new neurons. In those two methods, the input weights or
the output weights of the added neurons are initialized to zero to keep the output
function of the network unchanged, while the remaining weights are initialized
ingeniously. We point out that the inner logic of those two methods is a first step

n2n−1, while training the largest architecture is of time complexity n.

32



2.1. Neural architecture Search (NAS)

into the understanding of our technique and that more details will be given in
Chapter 4.

0
∣∣ ∥∇L∥2 GradMax
GradMax method Evci et al. [2022] grows architectures by adding blocks of

neurons to existing layers. Its strategy is to ensure that the norm of the gradient
with respect to the new parameters is as large as possible because the first-order
development of the loss with one usual gradient step is proportional to that norm.
Indeed considering fθ a neural network with parameters θ, and performing at time
t the update of parameter θ ← θ + δθ with δθ = −η∇θL(fθ), where L is the loss
function and η ≥ 0 is the learning rate, it follows that :

Lt+1 ≈ Lt +
〈
∇θLt, δθ

〉
(2.4)

≈ Lt − η ∥∇θL∥2 (2.5)

When adding neurons to layer l, they set the fan-in weights of the new neurons
to zero and compute the close form for the gradient norm of the new parameters.
Using the notation of the right scheme of Figure 2.5, it follows that :∥∥∥∥ ∂Lt

∂W new
l

∥∥∥∥2 ∝ ∥∥∥∥W new
l+1

TE

[
∂L

∂zl+1

hT
l−1

]∥∥∥∥2 (2.6)∥∥∥∥ ∂Lt

∂W new
l+1

∥∥∥∥2 = 0 (2.7)

Dataset Archi. Reference GradMax

CIFAR10 WRN-28-1 92.09± 0.2 91.1± 0.1
VGG-11 86.6± 0.3 84.4± 0.4

CIFAR100 WRN-28-1 69.3± 0.1 66.8± 0.2
ImageNet Mobilenet-V1 70.8± 0.0 68.6± 0.2

Figure 2.5: Left : Performance of GradMax on academic datasets from the table 1
of the original paper. Right : Adding one neuron at layer l with GradMax method,
figure from the original paper [Evci et al., 2022].

The fan-out weights of the new neurons are then set as the solution of the
following minimization problem :

argmax
W new

l+1

∥∥∥∥W new
l+1

TE

[
∂L

∂zl+1

hT
l−1

]∥∥∥∥2 s.t.
∥∥W new

l+1

∥∥ ≤ c (2.8)
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where hl+1 and zl+1 are respectively the post-activation of layer l − 1 and the
pre-activation of layer l + 1 and c is a positive constant. Note that this initial-
ization method might add neurons that are redundant with those of the current
architecture, mathematically speaking: there is no guarantee that the function
span of the new neurons and the function span of the current neurons are linearly
independent, and this, because there is no such constraint in the minimization
problem of Equation (2.8). We will see in Section 4.1.1 that such collinearity hap-
pens, especially when the gradient descent procedure has not yet converged (i.e.
∥∇θL∥ ≠ 0).

In the original paper of GradMax [Evci et al., 2022], the authors propose a
simple strategy on top of that initialization, which adds neurons in the order of
the layers at regular time intervals of the standard training of the overall archi-
tecture. This growth method is tested on several academic datasets, and we note
that the performance of the resulting architectures is, on average, 2.2 points of
accuracy below the performance of the same architectures re-trained from scratch
(the column Reference of left Table of Figure 2.5).

X⊥
∣∣ 0 NORTH or Random projection (RandomProj).

Like the previous method, the NORTH method of paper Maile et al. [2022] adds
neurons by blocks to existing layers. Its initialization method is such that each
increase of architecture expands some functional spaces defined by the network.
They propose two initialization strategies where, in both, the fan-out weights are
initialized to zero while the fan-in weights are set to random values, which are
orthogonal either to the linear span of the pre-activation on a given minibatch
or to the weight matrix. For each architecture increase, between 100 and 1000
neuron candidates are sampled from the associated kernel, and only the best one
is added to the architecture. Along with that initialization, they propose two
strategies for neuron additions. Each strategy relies on the use of a metric, which
is computed after each gradient step at each layer. Each metric is itself related
to a definition of the orthogonality of the current network, and neurons are added
when that metric is high. The hypothesis is, that if the metric is low because
of redundancy in a layer then, the neurons might benefit from differentiation via
gradient descent before any architecture increase; while if the metric is high, there
may be additional useful features to use, so neurons are added. In the paper,
the methodology is tested over different academic datasets and, contrary to the
GradMax method, the performances of the architectures found by such strategy
(fig. 2.6) are equivalent to the performances of the same architectures retrained
from scratch. This might be linked with the ability of the NORTH strategy to
avoid redundancy between the added neurons and the current architecture.

2.1.4 Performances for gradient-based methods

We finish this literature review on NAS by presenting in Figure 2.6 the perfor-
mances of the four recent one-shot and gradient-based methods (DARTS, Firefly,
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GradMax, and NORTH) on three classic visual tasks (CIFAR-10, CIFAR-100 and
ImageNet). For the Firefly, GradMax, and NORTH methods, we indicates the
architecture as those methods do not construct the overall architecture but rather
increase the size of existing layers; hence, the final architecture is similar to the
one indicated in the architecture column of Figure 2.6.

We make the following remarks for each indicator C0 the number of parameters
of the network at the beginning of the search, C∞ the final number of parameters,
T the time of search and P the accuracy on the test set with the final model :

• DARTS architecture final complexity (C∞) is not to be compared with the
ones from the other methods because the search space of DARTS (cell-based)
is different from the one used in Firefly, GradMax and NORTH approaches
(chain-structured), resulting on highly dissimilar architectures. This variable
alone is not sufficient to make a fair comparison between those, and an
indicator such as the number of FLOPS or non-parallelized operations at
test time would have been more suited.

• Comparison between the performances (P ) and the complexity (C0 and C∞)
of GradMax and NORTH are consistent as both methods share a lot in terms
of methodology, growth process, and neuron initialization. Nonetheless, we
assume GradMax search time complexity TGradMax can be roughly estimated
with TNORTH . Indeed, NORTH generates either 100 or 1000 random candi-
date new neurons before each addition, and each generation time complexity
is as TGradMax. Therefore, one could divide NORTH search time complexity
by 1000 and 100 to have rough estimates of TGradMax.

• Although DARTS outperforms all methods in terms of accuracy, we note
that its search time, T , is quite large (200 longer than NORTH), although
we did not take into account the time searching for the basic cells on the
CIFAR-10 dataset.

For the NORTH method, we used a by-hand average performance of the different
initializations and strategies using the figure 4 of their paper.
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2.2 Expressivity and Complexity

In this last part of the literature review, we present some NAS evaluation
performance strategies (2.1.1) and the standard mathematical tools quantifying a
network’s complexity or expressivity. In fact, those two share the same objective,
that is, estimating the performance of a network given its architecture. However,
while they are very alike, the evaluation performance strategy is empirically based,
while the mathematical tools are, by definition, theoretically well grounded. As a
matter of fact, evaluation performance strategies have used empirical observations
rather than mathematical concepts because, in the context of NAS, they should
be scalable to high-dimensional data and compatible with the usual optimization
procedure. Yet, it turns out that all existing theories, either do not combine with
gradient descent (that is, the classical optimization procedure), either demonstrate
performance properties on infinite networks, which is not an affordable setting in
practice when the memory and the computational power are limited , and finally,
they are not applicable within a reasonable time. Nonetheless, even if such con-
cepts have not been quite used in this specific subfield of NAS, they had an impact
elsewhere in the field of Machine learning; let us only cite Jacot et al. [2018] on
generalization with the Neural Tangent Kernel, which has changed our bias on
well-functioning architectures, justifying the consideration of huge designs for a
preferred search space for all applications.

We start this chapter by presenting the classical evaluation performance strate-
gies of NAS; then, in a second part, we present the theoretical tools that link a
finite neural network architecture to its ability to perform well on a dataset. While
those mathematical tools are yet not used in NAS, they are instead an inspira-
tion for future works and a comparison for our new metric Expressivity Bottleneck.
Note that this second section does not present any theoretical asymptotical results,
as, so far and by definition, they do not provide any guidance to search within the
space of architectures A (in particular thin ones), nor do they provide a metric to
compare architectures between each other.

2.2.1 Empirical methods

As defined in Section 2.1.1, evaluation performance strategies provide feedback
to the search strategy by evaluating the performance of the sampled architectures.
It is clear that training the sampled architecture by gradient descent provides a
nice estimate of its performance, but this procedure becomes rapidly exhaustive
and unfeasible when dealing with complex datasets, as they require large architec-
tures with high memory and computational cost when training. For that reason,
there exist evaluation performance strategies that estimate the final performance
of an architecture without this costly operation. We separate them into three main
categories: performance interpolation, lower estimates, and speed-up techniques.
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Speed-up techniques are all the methods accelerating the training of a network;
they can be coupled with another evaluation performance strategy. They are opti-
mization tricks rather than tools for estimating an architecture performance. Thus,
we consider them as out of the scope of this thesis and do not mention them. An
overview of such speed-up techniques can be found in the following surveys: Elsken
et al. [2019], White et al. [2023].

Performance interpolation. Those methods apply a classic Machine Learning
model to predict the performance of unseen architectures. One method consists in
training shortly some architectures and in interpolating the rest of their learning
curves by fitting a chosen parametric model [Domhan et al., 2015], or a Bayesian
neural network [Klein et al., 2017]. Another technique that has already been dis-
cussed in the Bayesian search strategy Section 2.1.3 is to use a surrogate model.
In this setting, the next architecture is given by maximizing the surrogate, that
is, maximizing the expectation of the next sampled network’s performance.

Lower estimate. Instead of predicting the network’s final performance with
all the available information and a complete optimization procedure, the lower
estimate strategies use degraded information or a partial optimization process.
One strategy consists of optimizing the network on a reduced dataset; the points
selected for that training can be randomly extracted from the original dataset,
smartly chosen Na et al. [2021], or generated by a Generative Teaching Network
Such et al. [2020]. Another strategy is to downgrade the quality of the input (by
averaging the pixels for images or lowering the registering frequency for a sound)
and to perform training on such a degraded dataset. A third strategy, known as
early stopping, evaluates the performance of a network after a short time of clas-
sical training while the learning curve has not yet converged Zhong et al. [2018].

2.2.2 Theoretical methods

In this section, we present the literature review on the concept of expressivity
and complexity, which are formal metrics that link a finite neural network archi-
tecture and its ability to perform well on some datasets. Those measures are of
great interest because they are closely related to the generalization properties of
networks, and in particular, they upper-bound the generalization error, also known
as the out-of-sample error or the true error of the model. Still, those metrics are
difficult to evaluate, and for that reason, they are never computed nor used in
practice.

We start the section by introducing some notations that will be used to define
each metric; then, we describe the VC-dimension, the Rademacher complexity, the
information bottleneck, and the Kolmogorov complexity.
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Notations

Definition 2.2.1 (Loss function). We note the loss function L :
(
Rd
)2 → R+. For a

fixed datasetD := {xi,yi}ni=1 and a function f , we note L(f(D)) := 1
n

∑
i ℓ(f(xi),yi),

where ℓ is the loss function for one sample. When there is no confusion, we might
use L(f) := L(f(D)).

Definition 2.2.2 (Random Variable). We note x ∼ D, the random vector variable
that follows the distribution law of D.

Definition 2.2.3 (Feed-forward network). We note fθ : Rp → Rd a feed-forward net-
work with L hidden layers, the application which maps x ∈ Rp to fθ(x) and which
consists in the iterative application of affine layers with weights Wl followed by a
activation function σl. Formally, the network parameters are θ := (Wl)l=1...L, and
the function fθ iteratively computes :

b0(x) =

(
x
1

)

∀l ∈ [1, L],


al(x) = Wl bl−1(x)

bl(x) =

(
σl(al(x))

1

)
fθ(x) = σL(aL(x))

Figure 2.7: Notations

The Vapnik–Chervonenkis (VC-dimension)

The VC-dimension is defined for a set of binary functions and can be seen as
the ability of this set to fit random noise. Formally, consider the set of functions
C := {f : Rp 7→ {0, 1} | f ∈ F} for some F , the VC-dimension of F , VC(C), is
defined as the natural number n, such that, there exists a set {x1, ...,xn} ∈ {Rp}n
such that for any binary set {b1, ..., bn} ∈ {0, 1}n there exists a function f ∈ C
which satisfies f(xi) = bi. That is, there exists a n set of inputs such that,
whatever the labels of those inputs, there exists a function in C that maps those
inputs to such labels. We give an example of this definition in Figure 2.8 for the
set of linear separators in a plane.

Considering a neural network, a straightforward application of that definition is
to consider a fixed architectureA and the set of functions described by the different
initialization of A, ie C = {fθ | θ ∈ Θ} for some Θ. Saying that VC(C) = n, is
equivalent to state that there exists {x1, ...,xn} ∈ {Rp}n such that, for any dataset
of size n noted {x̃i, yi}ni=1 where yi ∈ {0, 1}, there exists a θD ∈ Θ, for which the
prediction of the network fθD is exact if one considers a morphism between the
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input data {x̃1, ..., x̃n} and the points {x1, ...,xn}. By doing so, we completely
overfit the dataset.

We now state a result demonstrated in 1989 by Baum [1988] on the estimation
of the VC dimension for multilayer neural networks :

Proposition 2.2.4. The class of functions computed by multilayer neural net-
works with binary activation functions and ρ weights has VC dimension in O

(
ρlog(ρ)

)
.

This bound is tight in the sense that there exists configurations of multilayer
perceptron for which the VC-dimension is proportional to ρlog(ρ) (Maass [1994],
Sakurai [1995]).

We now study the link between the VC-dimension and the generalization prop-
erty of networks. For a given dataset D and a set of neural networks C, the quantity
of interest for generalization is the difference between the minimizer of the loss on
the true distribution of the dataset as:

f ∗ := argmin
f∈C

E(x,y)∼D[ℓ(f(x),y)] (2.9)

And the minimizer of the loss on the dataset D that is :

f̂ := argmin
f∈C

L(f(D)). (2.10)

We are interested in the excess of risk, that is :

l(f ∗, f) := E(x,y)∼D [ℓ(f(x),y)]− E(x,y)∼D [ℓ(f ∗(x),y)] (2.11)

In statistics this error is decoupled into two terms, the estimation and approxima-
tion errors, also known as the bias-variance decomposition :

l(f ∗, f) =

estimation error︷ ︸︸ ︷
l(f ∗, f)− l(f ∗, C) +

approximation error︷ ︸︸ ︷
l(f ∗, C) (2.12)

Figure 2.8: Consider a classification model on points in a two-dimensional plane.
The line should separate positive data points from negative data points. There
exist sets of 3 points that can indeed be correctly classified using this model (any
3 points that are not collinear can be correctly classified). However, no set of 4
points can be correctly classified for any possible labeling. Thus, the VC-dimension
of this set of functions is 3.

40



2.2. Expressivity and Complexity

where l(f ∗, C) := minf∈C l(f
∗, f).

The approximation error is how the set C approximates the task of dataset D,
while the estimation error quantifies how far our estimator f̂ is close to the ideal
estimator in C, that is f ∗. For neural networks, and especially when the number
of parameters is large, the approximation error goes toward 0 [Hornik et al., 1989].
Still, we keep this term in the equation and now study the estimator error that is
equal to :

l(f ∗, f)− l(f ∗, C) (2.13)

We finish this subpart by an upper-bound on the generalization error (Vapnik-
Chervonenkis inequality of section 3 of Boucheron et al. [2005]):

Proposition 2.2.5. Let C a function set and D a dataset of size n, then

l(f ∗, f)− l(f ∗, C) ≤ κ

√
VC(C)

n
(2.14)

with κ a universal constant.

Before commenting on this last property, we should present the Rademacher com-
plexity, which is a notion close to VC-dimension and which appears in a proposition
whose formulation is close to Equation (2.14).

Rademacher complexity

Rademacher complexity is a more modern notion that is, in comparison with the
VC dimension, input distribution dependent2 and defined for any class real-valued
function. Like the VC-dimension, the Rademacher complexity is defined for a
set of function C, and it measures the expected noise-fitting-ability of C over a
distribution of the dataset D. Formally, let {xi, yi}ni=1

iid∼ D = and σi ∼ B(12)
3,

then the Rademacher complexity is defined as :

R(C) := ED

[
1

n
Eσ1,...,σn

[
sup
f∈C

n∑
i=1

σif(xi)
∣∣∣D]] (2.15)

where the second expectation is over the distribution of the dataset D, that is a
random variable. This complexity can be seen as the sup over the scalar product
between the vectors of output f(X) := (f(x1), ..., f(xn))

T and the vector variable
σ := (σ1, ..., σn)

T , such as :

R(C) := ED

[
1

n
Eσ

[
sup
f∈C

σTf(X))
∣∣∣D]] (2.16)

2its value depends on the considered task
3B is the Bernoulli distribution

41



Chapter 2. Literature review

Consider the set of functions C defined by feed forward neural networks f :
Rm −→ R with weights Wl bounded by ω, having λ−Lipschitz activation functions
and L depths, the following proposition holds:

Proposition 2.2.6. Suppose that the inputs x are such that ∥x∥∞ := supi=1,...,p x[i]
is bounded by 1 and note n the size of the dataset, then

R(C) ≤ 1√
n

(
ω + 2ω2λ

L−3∑
k=0

(2ωλ)k + 2ω(2ωλ)L−2 +
√

2 log(2m)

)
(2.17)

The demonstration can be found in Rebeschini [2022] proposition 3.6. Further-
more, the Rademacher complexity upper bounds the risk minimization error as (
see Arlot [2020] section 3.7.4)

l(f ∗, f)− l(f ∗, C) ≤ 2R(ℓ(C)) (2.18)

where ℓ(C) := {ℓ(f(.), .) : (x,y) 7→ ℓ(f(x),y) | f ∈ C}.

Although being differently defined, the VC-dimension and the Rademacher com-
plexity capture the ability of a set of functions to fit noise. However, while
a set of functions might be very expressive or complex (with a relatively large
VC-dimension or Rademacher complexity), no general algorithm nor initialization
method exists to reach or even approach the most expressive function inside this
set. The limits of Equation (2.14) and Equation (2.18) do not depend on the labels
y and ensure good generalization properties if the number of examples is compa-
rable or greater than the complexity of the model. According to such modeling,
the model should be sufficiently large to ensure that the approximation error of ??
is zero but not too large compared to the size of the dataset D to ensure a good
approximation error.

We now define the bottleneck as defined in information theory.

Information Bottleneck and information theory

The bottleneck metric defines an inverse of expressivity by quantifying the inabil-
ity of the network to extract relevant information from its inputs. This metric
uses the conditional mutual information function, noted I, which is defined with
tools and definitions from information theory (the Shannon entropy, the mutual
information, and the conditional mutual information). This function I can be com-
puted between two random variables x and x̂, we note it I(x; x̂), and it calculates
the reduction in the uncertainty of x due to the knowledge of x̂4. Considering a
neural network f and a dataset D = {xi,yi}n, the information bottleneck metric,
IB, is a trade off between the mutual information of the input x and its internal

4The mutual information is constructed on the Shannon entropy H(x) that is also referred
as the self-information of a random variable x. Formally I(x; x̂) := H(x)−H(x|x̂).
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representation x̂, and the mutual information of the internal representation x̂ and
the desired output y. Mathematically speaking :

IB(f) := I(x, x̂)− βI(x̂,y) (2.19)

where β is a fixed hyper parameter. The article Tishby and Zaslavsky [2015], which
introduces it, proposes to minimize such criterion instead of the conventional loss
because a well-functioning neural network would efficiently compress and reduce
the information of x (equivalently reducing I(x, x̂)) while selecting the relevant
information to predict y (which is equivalent to maximize I(x̂,y)). While such
criterion might be a good quantification of the inexpressivity of a network and, it
was also proved to be an effective optimization procedure when y is a categori-
cal data, as exp(−I(x̂,y)) upper bounds the probability of misclassifying x and
I(x, ŷ) plays the role of a regularization term [Shamir et al., 2010].

Kolmogorov Complexity

We finish this section with a note on Kolmogorov complexity, a notion of complex-
ity that was invented in the sixties and named after its creator. The Kolmogorov
complexity of a mathematical object is its algorithm complexity, which is the
length of the shortest binary computer program that describes that object. In
the context of NAS and for a given dataset, one can search for a neural network
that correctly maps all the inputs of such dataset to their outputs but whose Kol-
mogorov complexity is relatively low. Such a network should less overfit, following
the Solomonoff’s prior which consider that the best possible scientific model is
the shortest algorithm. However, suppose the Kolmogorov complexity would in-
geniously guide a NAS search strategy; the fact remains that such complexity is
impossible to calculate and even less differentiable, making its use impossible in a
NAS search strategy.

An alternative to the Kolmogorov complexity, especially in machine learning,
is to consider the Minimum Description Length (MDL). Compared to Kolmogorov
complexity, the MDL is a training criterion which regroups in one expression the
error of the model and its complexity. A well-known MDL criterion is the Bayesian
information criterion (BIC) that quantifies the model complexity by the number
of its parameters and the size of the dataset. Minimizing the BIC criterion during
training would enhance the model prediction but also orient the search toward a
network with “few” parameters, and consequently that would have a short binary
encoding that, in this context, often induces a small architecture and a short
execution time5. In fact, those properties (compactness and generalization) are

5The Kolmogorov complexity of a standard feed-forward network with ReLU activation func-
tion is at most proportional to the memory of its parameters because the operations computed
through its layers are identical and can be encoded by a single function whose Kolmogorov com-
plexity is fixed and independent of the network configuration. Note, that when the weights of
the network are shared through its layers, this statement is not true as coding the repetition of
the same operation has a small BIC but a long execution time.
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not straightforward in NAS because classical theories, such as the approximation
theorem and the Neural Tangent Kernel [Hornik et al., 1989, Jacot et al., 2018],
indicate that we would prefer to search for large architectures because they are
more likely to generalize well and achieve full expressivity. Note that the MDL
theory does not care about the optimization properties of the model training, it
just provides a criterion to optimize.

Conclusion

As stated in the introduction, the mathematical tools evaluating neural net-
works’ complexity or expressivity are hardly usable. Firstly, because none of them
is easily computable; second, because they do not provide any useful guidance or
information on what type of architecture should be used or sampled at the next
step of the search strategy. In fact, those metrics can be used to compare the
expressivity or the bottleneck of different architectures, but, without a trial and
error process, they do little to propose what architecture modifications should be
performed to enhance the performances.
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The problem statement

Starting from the beginning, we saw that there exists multiple NAS techniques
and that most of them rely on the trial and error method, which is embodied by
the back and forth between the search and evaluation performance strategy. This
time-consuming process mainly stems from the decoupling between the search into
the space of architectures A and the space of parameters in Equation (2.3), as it
requires sampling and training multiple architectures. However, a new category of
methods, called the one-shot techniques, avoids such costly processes by construct-
ing and training a unique architecture during the search. In fact, those methods
achieve, in a certain way, the joint optimization of the network architecture and its
parameters, transforming the two-step optimization procedure of Equation (2.3)
into a unique and conventional optimization problem. In particular, the Grad-
Max and the NORTH methods can be applied to any task, and they can grow
architecture indefinitely.

The GradMax method initializes its new neurons by maximizing the norm of
those new neurons parameters, while the NORTH method initializes them by ex-
panding the functional span of the network, paying attention to redundancy within
the current architecture. By construction, but also according to Section 2.1.4, the
GradMax approach is the fastest. However, its added neurons might be redun-
dant with the current architecture, which might explain why the method obtains
lower performance for a fixed target architecture (Figure 2.5). On the other hand,
the NORTH method is slower because its procedure still relies on random trials
of neuron additions (without further training), but the final performances of its
constructed networks are equal to the performances of the same architectures re-
trained from scratch. This observation gives rise to two remarks. First, adding
neurons greedily to the network is an effective way of growing its architecture;
second, to achieve high performance with a small network we might need to care
about redundancy within the architecture. Ideally, we would like to construct an
adding strategy that is as fast as the GradMax method and also as effective in
performance as the NORTH method.

To achieve this successful combination, we aim at constructing a metric measur-
ing the lack of expressivity of a network, which ranks among the existing theoreti-
cal metrics but that is easily computable and scalable to high dimensional datasets.
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For the next chapters I continue using the pronoun “we”. It should be clear
to the reader that those next chapters reflect my research and my approach on
the subject; however, its realization would have been impossible without the active
collaboration of my directors and my collaborators, which are, partly and implicitly,
included in that pronoun “we”.

Contributions

In this thesis, we aim at bridging the gap between the GradMax and the
NORTH method, but also between theory and application, by constructing a
new metric of expressivity that relies on mathematical tools and that is easily
computable. We define the metric Expressivity Bottleneck as the difference
between what the backpropagation asks for and what can be done by a small pa-
rameter update (such as a gradient step), that is, between the desired variation for
each activation in each layer (for each sample) and the best variation that can be
realized by a parameter update. We show that this metric can be easily computed
from backpropagation, which is an inexpensive and straightforward computation.
We show, using an optimization trick, that on top of quantifying lack of expres-
sivity, this metric can also solve a network bottleneck by adding suitable neurons
that are orthogonal to the current architecture, and this, during the architecture
training. On this basis, we define a novel NAS search method and propose an
incremental algorithm that iteratively grows the network until an appropriate ar-
chitecture is found.

The contributions of this manuscript are manifold and could be described as
follows. First, considering a neural network architecture, we adopt a functional
analysis perspective on gradient descent in this architecture. We not only optimize
the weights of the current architecture but also dynamically adjust the architecture
itself to progress towards suitable parameterized functional spaces. This approach
mitigates optimization challenges like local minima due to thin architectures.
For this, we properly define and quantify the concept of expressivity bottlenecks,
both globally at the neural network output and locally at individual layers, in a
computationally accessible manner. This methodology enables the localization of
expressivity bottlenecks within a neural network.
Then, we formally define as a quadratic problem the best possible neurons to add
to a given layer to decrease the lack of expressivity, solve it, and compute the
associated expressivity gain.
Also, we provide tools to adapt the architecture to the specific task by expand-
ing it where necessary within a single run, maintaining competitive computational
complexity compared to training a large model once. To remove the need for
hyper-optimization of layer width, one could specify a target accuracy and stop
neuron additions when reached.
Furthermore, we prove (empirically and theoretically) that a simple one-shot strat-
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egy on the basis of that new metric reaches zero error on the training set.
Moreover, we compare the expressivity bottleneck method with GradMax and
NORTH and prove, without any additional hypothesis, that those two one-shot
strategies can be seen as a particular application of the Expressivity Bottleneck
method.
Finally, we implemented a public module named TINYpub which starts from a
thin architecture and grows linear and convolutional layers on the basis of that
theory.

Those contributions are presented in different parts of the manuscript, from
Chapter 3 to Chapter 5.

In Chapter 3, we define the expressivity bottleneck metric as the minimization
of a quadratic problem. In particular, we show that, for a neural network, solv-
ing this minimization problem naturally determines updates of parameters and
increases of architecture, which are orthogonal to each other. We prove that a
naive strategy on the basis of such an update of architecture converges to zero loss
on the training set. In Chapter 4, we reformulate GradMax and NORTH methods
with our formalism to clarify and understand the «philosophy » of each method
from the expressivity bottleneck point of view. Finally, in Chapter 5, we construct
a naive NAS strategy on the basis of the expressivity bottleneck metric and apply
such strategy to academic datasets.

A major part of the following sections has been published in the TMLR journal
[Verbockhaven et al., 2024]. The corresponding sections are indicated with the icon

on their titles.
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Chapter 3. Expressivity Bottleneck

In this Chapter 3, we define the expressivity bottleneck metric and provide tools
to construct a search strategy on the basis of such metric. We start in Section 3.1,
by recalling the notations and providing some intuitions on the expressivity bot-
tleneck metric; then, in Section 3.2, we properly define the expressivity bottleneck
metric and show how it can be used to compute the best update of the current
architecture and the new neurons to add. This chapter ends with the Section 3.3,
which provides some convergence properties for NAS search strategies using the
architecture updates of the previous section.

3.1 Definitions and Intuitions

In this section, we start by recalling the notations, the main definitions, and the
assumptions of this thesis. In a second part Section 3.1.2, we propose to merge the
two-step optimization procedure of Equation (2.3) with a change of scalar product.
We show in Section 3.1.3 that this change naturally defines the projected functional
gradient, which is the starting point of our expressivity bottleneck metric.

3.1.1 Notations

For the sake of simplicity, the objects of the main sections are defined only for
linear feed-forward networks, while the equivalence for convolutional layers is in-
dicated with a reference to the annex. Let F be a functional space, e.g. L2(Rp →
Rd), and L : F → R+ a loss function defined on it, and of the form L(f) =

E(x,y)∼D

[
ℓ(f(x),y)

]
, where ℓ is the per-sample loss that is assumed to be differen-

tiable, and where D is the sample distribution, from which the dataset {(xi,yi)}Ni=1

is sampled, with xi ∈ Rp and yi ∈ Rd.
Let consider a network fθ : Rp → Rd with L hidden layers, each of which

consisting of an affine layer with weights Wl followed by a differentiable activation
function σl which satisfies σl(0) = 0. The network parameters are then θ :=
(Wl)l=1...L, and the network iteratively computes:

b0(x) =

(
x
1

)

∀l ∈ [1, L],


al(x) = Wl bl−1(x)

bl(x) =

(
σl(al(x))

1

)
fθ(x) = σL(aL(x))

Figure 3.1: Notations

To any vector-valued function noted t(x) and any batch of inputs X :=
[x1, ...,xn], is associated the concatenated matrix T (X) :=

(
t(x1) ... t(xn)

)
∈
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3.1. Definitions and Intuitions

R|t(.)|×n. The matrices of pre-activation and post-activation activities at layer l
over a minibatch X are thus respectively: Al(X) =

(
al(x1) ... al(xn)

)
and

Bl(X) =
(
bl(x1) ... bl(xn)

)
.

Convolutions can also be considered, with appropriate representations (cf ma-
trix bcl (x) in Theorem C.1.1).

3.1.2 Changing scalar product

As a starting point, let first recall the problem statement of NAS as defined
in Equation (2.3). For a given dataset, NAS can be formulated as the following
optimization problem :

argmin
A∈A

Lval(A(θ∗)) s.t. θ∗ := argmin
θ

Ltrain(A(θ)) (3.1)

where Lval is the loss on the validation set and Ltrain is the loss on the train
set. Ideally, we would jointly optimize the architecture A and its weights θ by
defining a unique optimization procedure. This would remove the performance
evaluation strategy from the search process, saving both time and computational
resources. To find such a procedure, we draw inspiration from the well-known
gradient-descent algorithm that is performed when one wants to find a local min-
imum of a differentiable loss function L : U → R on U where (U, ⟨. , . ⟩†) is an
Hilbert space. The algorithm starts from a random u0 ∈ U and increments it
(t→ t+ 1) using the update rule :

ut+1 = ut − η∇†
uL(u)|u=ut (3.2)

where η > 0 is the gradient step and ∇†
.L(.) is the gradient of L that is defined

with the scalar product ⟨. , . ⟩† and which satisfies for u ∈ U (Lecué [2016]):

δu ∈ U, L(u+ δu) = L(u) +
〈
∇†

uL(u), δu
〉
† + o(∥δu∥†) (3.3)

||.||† being the norm associated to the scalar product ⟨., .⟩†. In fact, the gradient
descent objective, that is minimizing the loss, can be inferred again from Equa-
tion (3.3) as choosing δu = −η∇†

uL(u) is equivalent to minimizing the first order
development of L in u 1.

In practice, when trying to fit a network on a task by minimizing the loss
function L, the network architecture is fixed, and one choose to optimize L on the
architecture weight Θ, that is, one chose U = Θ and

〈
δθA, δθB

〉
:=
∑

i δθ
A
i δθ

B
i for

δθA, δθB ∈ Θ. However, this way of proceeding forces the evolution of the function
during training to lie within the realm of what is expressible with the chosen
architecture and prevents any optimization across architectures. To address this

1For a fixed norm of δu, the scalar product
〈
∇†

uL(u), δu
〉
† is minimal when δu aligns with

−∇†
uL(u).
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issue, we change the space of interest and consider U = L2(Rp → Rd) as the square-
integrable function and the scalar product defined as ⟨f1, f2⟩L2

:=
∫
x∈R[f1 · f2].

Doing so, we take a functional perspective on the use of neural networks and search
for a function f : Rp → Rd that minimizes the loss L by gradient descent: ∂f

∂t
=

−∇L2
f L(f), where∇L2

f denotes the functional gradient for the scalar product ⟨., .⟩L2

and t denotes the evolution time of the gradient descent. we define this direction
as vgoal := −∇L2

f L(f) that is a function of the same type as f and whose value
at x is easily computable as vgoal(x) = −

(
∇L2

f L(f)
)
(x) = −∇uℓ(u,y(x))

∣∣
u=f(x)

(see Appendix B.1 for more details). This direction vgoal is the best infinitesimal
variation in F to add to f to decrease the loss ℓ, ie for all (x,y) ∼ D, performing
fθ ←− fθ + ηvgoal is such that :

ℓ ((fθ + ηvgoal)(x)) = ℓ(fθ(x))− η
∥∥∇uℓ(u)|u=fθ(x)

∥∥2 + o(η) (3.4)

where ||.|| is the Euclidean norm. One can deduce that, for a fixed dataset D =
{(xi,yi)}ni=1, that incremental vgoal decreases the averaged loss as follows :

L(fθ + ηvgoal) :=
1

n

n∑
i=1

ℓ((fθ + ηvgoal)(xi)) (3.5)

= L(fθ)−
η

n

(
n∑

i=1

∥∥∇uℓ(u)|u=fθ(xi)

∥∥2)+ o(η) (3.6)

while the usual gradient (t → t + 1) with θ ← θ − η∇θL(fθ) and starting from
Equation (3.3) decreases the loss differently:

L(fθ−η∇θL(fθ)) = L(fθ)− η

∥∥∥∥∥∇θ

(
1

n

n∑
i=1

ℓ(fθ(xi))

)∥∥∥∥∥
2

+ o(η) . (3.7)

For the following sections, we will use the abuse of notation that ∥u∥ is either the
norm in L2 or the usual Euclidean norm, depending on the type of u.

3.1.3 Parametric gradient descent reminder and optimal move
direction.

However, in practice, to represent functions and to compute gradients, the
infinite-dimensioned functional space F , to which vgoal belongs, has to be replaced
with a finite-dimensioned parametric space of functions, which is usually done by
choosing a particular neural network architecture A with weights θ ∈ ΘA. The
associated parametric search space FA then consists of all possible functions fθ
that can be represented with such a network for any parameter value θ. For the
usual gradient descent and under standard weak assumptions (see Appendix B.2),
the gradient descent is of the form:

∂θ

∂t
= −∇θL(fθ) = −E(x,y)∼D

[
∇θℓ(fθ(x),y)

]
. (3.8)

52



3.1. Definitions and Intuitions

Using the chain rule (on ∂fθ
∂t

then on ∇θℓ(fθ(x),y)), these parameter updates yield
a functional evolution:

vGD :=
∂fθ
∂t

=
∂fθ
∂θ

∂θ

∂t
=

∂fθ
∂θ

E(x,y)∼D

[
∂fθ
∂θ

T

(x) vgoal(x)

]
(3.9)

which significantly differs from the original functional gradient descent. We will
aim to augment the neural network architecture so that parametric gradient de-
scents can get closer to the functional one.

Let T fθ
A , or just TA, the tangent space of FA at fθ, that is, the set of all possible

infinitesimal variations around fθ under small parameter variations:

T fθ
A :=

{
∂fθ
∂θ

δθ

∣∣∣∣ s.t. δθ ∈ ΘA

}
.

This linear2 functional space is a first-order approximation of the neighborhood
of fθ within FA. The direction vGD obtained above by gradient descent is actu-
ally not the best one to consider within TA. Indeed, the best move v∗ would be
the orthogonal projection of the desired direction vgoal := −∇fθL(fθ) onto TA.
This projection is what a (generalization of the notion of) natural gradient would
compute [Ollivier, 2017]. Indeed, the parameter variation δθ∗ associated to the
functional variation v∗ = ∂fθ

∂θ
δθ∗ is the gradient −∇TA

θ L(fθ) of L ◦ fθ w.r.t. pa-
rameters θ when considering the L2 metric on functional variations ∥∂fθ

∂θ
δθ∥L2(TA),

not to be confused with the usual gradient ∇θL(fθ), based on the L2 metric on
parameter variations ∥δθ∥L2(R|ΘA|). This can be seen in a proximal formulation as:

v∗ = argmin
v∈TA

∥v − vgoal∥2 = argmin
v∈TA

{
DfL(f)(v) +

1

2
∥v∥2

}
(3.10)

where D is the directional derivative (see details in Appendix B.3), or equivalently
as:

δθ∗ ≜ −∇TA
θ L(fθ) = argmin

δθ∈ΘA

∥∥∥∥∂fθ∂θ
δθ − vgoal

∥∥∥∥2 (3.11)

= argmin
δθ∈ΘA

{
DθL(fθ)(δθ) +

1

2

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥2
}

. (3.12)

When vgoal does not belong to the reachable subspace TA, there is a lack of
expressivity, that is, the parametric space A is not rich enough to follow the ideal
functional gradient descent. This happens frequently with small neural networks.
The expressivity bottleneck is then quantified as the distance ∥v∗ − vgoal∥ be-
tween the functional gradient vgoal and the optimal functional move v∗ given the
architecture A (in the sense of Equation (3.10)).

2 ∂fθ
∂θ δθ : Rp → Rd, x 7→ ∂fθ(x)

∂θ δθ
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Figure 3.2: Expressivity bottleneck

Example. Suppose one tries to estimate the
function y = ftrue(x) = 2 sin(x) + x with a
linear model fpredict(x) = ax + b. Consider
(a, b) = (1, 0) and the square loss L . For the
dataset of inputs (x0, x1, x2, x3) = (0, π

2
, π, 3π

2
),

there exists no parameter update (δa, δb) that
would improve prediction at x0, x1, x2 and x3

simultaneously, as the space of linear functions
{f : x → ax + b | a, b ∈ R} is not expres-
sive enough. To improve the prediction at
x0, x1, x2 and x3, one should look for another,
more expressive functional space such that for
i = 0, 1, 2, 3 the functional update ∆f(xi) :=
f t+1(xi) − f t(xi) goes into the same direc-
tion as the functional gradient vgoal(xi) :=
−∇f(xi)L(f(xi), yi) = −2(f(xi) − yi) where
yi = ftrue(xi).

x

0

1

2

3

4

5

6

y

target

prediction

Figure 3.3: Linear interpolation
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Generalizing to all layers

The same reasoning can be applied to the pre-activations al at each layer l, seen
as functions al : x ∈ Rp 7→ al(x) ∈ Rdl defined over the input space of the
neural network. The optimal parameter update for a given layer l then follows
the projection of the desired update −∇al

L(fθ) of the pre-activation functions al

onto the linear subspace T al
A of pre-activation variations that are possible with

the architecture, as we will detail now.
Given a sample (x,y) ∈ D, standard backpropagation already iteratively com-

putes :

vl
goal(x) := − (∇al

L(fθ)) (x) (3.13)
= − ∇uℓ (σL(WL σL−1(WL−1 ... σl(u))), y)|u=al(x)

(3.14)

which is the derivative of the loss ℓ(fθ(x),y) with respect to the pre-activations
u = al(x) of each layer. This is usually performed in order to compute the gra-
dients w.r.t. model parameters Wl, as ∇Wl

ℓ(fθ(x),y) = ∂al(x)
∂Wl

∇al
ℓ(fθ(x),y).

vl
goal(x) := − (∇al

L(fθ)) (x) indicates the direction in which one would like to
change the layer pre-activations al(x) in order to decrease the loss at point x.
However, given a minibatch of points (xi), most of the time, no parameter move
δθ is able to induce this progression for each xi simultaneously because the θ-
parameterized family of functions al is not expressive enough. Given a subset of
parameters θ̃ (such as the ones specific to a layer: θ̃ = Wl), and an incremental
direction δθ̃ to update these parameters (e.g. the one resulting from a gradient
descent: δθ̃ = −

∑
(x,y)∈minibatch∇θ̃ℓ(fθ(x),y), the impact of the parameter up-

date γδθ̃ on the pre-activations al at layer l at order 1 in γ, where γ an amplitude
factor, is as vl(x, γδθ̃) := γ ∂al(x)

∂θ̃
δθ̃. The factor γ is the analog of the learning

rate and is considered to be small.

3.2 Expressivity bottlenecks

In this section, we mathematically defined the expressivity bottleneck metric;
how it can be applied to update the parameters of a network, and also, how it can
be used to expand its architecture without redundancy.

3.2.1 The expressivity bottleneck

We quantify expressivity bottlenecks at any layer l as the distance between
the desired activity update vl

goal(.) and the best realizable one vl(.) (cf Figure
Figure 3.2):

Definition 3.2.1 (Lack of expressivity). For a neural network fθ and a minibatch of
points X = {(xi,yi)}ni=1, the lack of expressivity at layer l is defined as how far the
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desired activity update V l
goal = (vl

goal(x1),v
l
goal(x2), ...) is from the closest possible

activity update V l = (vl(x1),v
l(x2), ...) realizable by a parameter change δθ:

Ψl := min
vl∈T al

A

1

n

n∑
i=1

∥∥vl(xi)− vl
goal(xi)

∥∥2 (3.15)

= min
δθ

1

n

∥∥V l(X, δθ)− V l
goal(X)

∥∥2
Tr

(3.16)

where ||.|| stands for the usual Euclidean norm, ||.||Tr for the Frobenius norm, and
V l(X, δθ) is the activity update resulting from parameter change δθ as defined in
the previous section. In the two following parts, the minibatch X is fixed and the
notations are simplified accordingly by removing the dependency on X.

3.2.2 Best move without modifying the architecture of the net-
work

Let δW ∗
l be the solution of Equation (3.16) when the parameter variation δθ

is restricted to involve only layer l parameters, i.e. Wl. This move is sub-optimal
in that it does not result from an update of all architecture parameters but only
of the current layer ones:

δW ∗
l = argmin

δW

1

n

∥∥V l(δW )− V l
goal

∥∥2
Tr

(3.17)

Proposition 3.2.2. The solution of Problem (Equation (3.17)) is:

δW ∗
l =

1

n
V l

goalB
T
l−1(

1

n
Bl−1B

T
l−1)

+ (3.18)

where P+ denotes the generalized inverse of matrix P .
Proof in Appendix C.1

This update δW ∗
l is not equivalent to the usual gradient descent update, whose

form is δWGD
l ∝ V l

goalB
T
l−1. In fact, the associated activity variation, δW ∗

l Bl−1,
is the projection of V l

goal on the post-activation matrix of layer l − 1, that is to
say onto the span of all possible post-activation directions, through the projector
1
n
BT

l−1(
1
n
Bl−1B

T
l−1)

+Bl−1. To increase expressivity if needed, we will aim at in-
creasing this span with the most useful directions to close the gap between this
best update and the desired one. Note that the update δW ∗

l consists of a stan-
dard gradient (V l

goalB
T
l−1) and of a (kind of) natural gradient only for the last part

(projector), as we consider metrics in the pre-activation space.
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Figure 3.4: Feed-forward networks, in red the connection where modification δθ
might apply when solving the expressivity bottleneck at layer l. The top figure
is for the original formulation Equation (3.16) while the bottom figure is for the
suboptimal formulation Equation (3.17).

3.2.3 Reducing expressivity bottleneck by modifying the archi-
tecture

To get as close as possible to V l
goal and to increase the expressive power of the

current neural network, we modify each layer of its structure. At layer l−1, we add
K neurons n1, ..., nK with input weights α1, ...,αk and output weights ω1, ...,ωK

(cf Figures 3.5 and 3.7). The following expansions by concatenation is performed
: W T

l−1 ←
(
W T

l−1 α1 ... αK

)
and Wl ←

(
Wl ω1 ... ωK

)
.

This architecture modification is noted θ ← θ⊕θK↔ where⊕ is the concatenation
sign and θK↔ := (αk,ωk)

K
k=1 are the K added neurons.

The added neurons could be chosen randomly, as in the usual neural network
initialization, but this would not yield any guarantee regarding the impact on the
system loss. Another possibility would be to set either input weights (αk)

K
k=1 or

output weights (ωk)
K
k=1 to 0, so that the function fθ(.) would not be modified, while

its gradient w.r.t. θ would be enriched from the new parameters. Another option
is to solve an optimization problem as in the previous section with the modified
structure θ ← θ ⊕ θK↔ and jointly search for both the optimal new parameters θK↔
and the optimal variation δW of the old ones:

argmin
θK↔, δW

1

n

∥∥V l(δW ⊕ θK↔)− V l
goal

∥∥2
Tr

(3.19)
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Figure 3.5: Adding one neuron to layer
l in cyan (K = 1), with connections in
cyan. Here, α ∈ R5 and ω ∈ R3.

Figure 3.6: Sum of functional moves

Figure 3.7: Adding one convolutional neuron at layer one for an input with three
channels.

As shown in figure Figure 3.6, the displacement V l at layer l is actually a
sum of the moves induced by the neurons already present (δW ) and by the added
neurons (θK↔), Equation (3.19) rewrites as :

argmin
θK↔, δW

1

n

∥∥V l(θK↔) + V l(δW )− Vgoal
l
∥∥2
Tr

(3.20)

with vl(x, θK↔) :=
∑K

k=1ωk (bl−2(x)
Tαk) (See Appendix B.4). Choosing δW
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3.2. Expressivity bottlenecks

as the best move of already-existing parameters as defined in Theorem 3.2.2 and
noting V l

goalproj
:= V l

goal − V l(δW ∗), we search for the solution
(
K∗, θK∗

↔
)

of the
optimization problem :

argmin
K, θK↔

1

n

∥∥∥V l(θK↔)− V l
goalproj

∥∥∥2
Tr

. (3.21)

One should note that Equation (3.20) and Equation (3.21) are generally not equiv-
alent, though similar (cf. Appendix B.5).
This quadratic optimization problem can be solved thanks to the low-rank matrix
approximation theorem [Eckart and Young, 1936], using matrices N := 1

n
Bl−2

(
V l

goalproj

)T
and S := 1

n
Bl−2B

T
l−2. As S is positive semi-definite, let its SVD be S = OΣOT ,

and define S− 1
2 := O

√
Σ

−1
OT , with the convention that the inverse of 0 eigenval-

ues is 0. Finally, consider the SVD of matrix S− 1
2N =

∑R
k=1 λkukv

T
k , where R is

the rank of the matrix S− 1
2N . Then:

Proposition 3.2.3. The solution of Problem (Equation (3.21)) is:
• optimal number of neurons: K∗ = R

• their optimal weights: θK
∗

↔ = (α∗
k,ω

∗
k)

K∗

k=1 =
(√

λkS
− 1

2uk,
√
λkvk

)K∗

k=1

Moreover for any number of neurons K ⩽ R, and associated optimal weights θK,∗
↔

consisting of the first K neurons of θK
∗

↔ , the expressivity gain can be quantified
very simply as a function of the singular values λk:

Ψl
θ⊕θK,∗

↔
= Ψl

θ −
K∑
k=1

λ2
k (3.22)

where Ψl
θ is the expressivity bottleneck (defined in Equation (3.16)). For convolu-

tional layers instead of fully connected ones, Equation (3.22) becomes an inequality
(⩽).
Proof in Appendix C.2.

In practice before adding new neurons (α, ω), we multiply them by an amplitude
factor γ found by a simple line search, i.e. we add (

√
γα,
√
γω) (we will discuss

this amplitude factor in more detail in Section 4.2.1). The addition of each neuron
k has an impact on the bottleneck of the order of γλ2

k provided γ is small. We
observe the same phenomenon with the loss as stated in the next proposition :

Proposition 3.2.4. For γ > 0, solving (Equation (3.21)) using Vgoalproj = Vgoal−
V (γδW ∗) is equivalent to minimizing the loss L at order one in γV l. Furthermore,
performing an architecture update with γδW ∗ (Equation (3.17)) and a neuron
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Chapter 3. Expressivity Bottleneck

addition with γθK,∗
↔ (Theorem 3.2.3) has an impact on the loss at first order in γ

as :

L(fθ⊕γθK,∗
↔

) :=
1

n

n∑
i=1

ℓ(fθ⊕γθK,∗
↔

(xi),yi)

= L(fθ)− γ
(
σ′
l−1(0)∆θK,∗

↔
+∆δW ∗

)
+ o(γ) (3.23)

with

∆θK,∗
↔

:=
1

n

〈
V l

goalproj
, V l(θK,∗

↔ )
〉
Tr

=
K∑
k=1

λ2
k (3.24)

∆δW ∗ :=
1

n

〈
V l

goal, V
l(δW ∗)

〉
Tr

⩾ 0 . (3.25)

Proof in Appendix C.3

The last two propositions are linked. While the complete proof for linear and
convolutional layers can be found in the annexes, we now provide some intuitions
to go from Equation (3.21) to Theorems 3.2.3 and 3.2.4 for linear feedforward
network.

Sketch of proof for Theorem 3.2.3:
By linearizing the activation function σl−1 (cf Appendix B.4), we ob-
tain V = ΩATB. The expressivity bottleneck squared (Equation (3.21)
squared) becomes :

argmin
A,Ω

∥∥∥ΩATB − Vgoalproj

∥∥∥2 (3.26)

By developing the norm using the scalar product, we remark that :∥∥ΩATB
∥∥2 = ∥∥∥S 1

2AΩT
∥∥∥2 and

〈
ΩATB,Vgoalproj

〉
=
〈
S

1
2AΩT ,S− 1

2N
〉

Where S := BBT is the covariance matrix of B, N := BVgoal
T
proj is the

covariance matrix between B and Vgoalproj and S
1
2 := O

√
ΣOT is defined

using the SVD of S = OΣOT . Thus, we infer that there is an equivalence
between solving Equation (3.26) and the following minimization problem :

argmin
A,Ω

∥∥∥S 1
2AΩT − S− 1

2N
∥∥∥2 (3.27)

We solve this last equation on variable Q := S
1
2AΩT . The solution Q∗ is

equal to the matrix S− 1
2N and we choose a particular solution for the couple
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3.2. Expressivity bottlenecks

(
S

1
2A∗,Ω∗

)
that is given by the SVD of S− 1

2N = UΛV T , ie

Q∗ = S− 1
2N = UΛV (3.28)

(S
1
2A∗,Ω∗) = (U

√
Λ,V

√
Λ) (3.29)

.
NB: There are an infinite number of solutions for the couple

(
S

1
2A∗,Ω∗

)
.

Sketch of proof for Theorem 3.2.4:
This proposition suggests that when adding the new neurons, there is a link
between the decrease of loss L and the decrease of the expressivity bottleneck
Ψ. This is a direct consequence of the first order development of the loss in
al when performing al ← al + γV (A∗,Ω∗) at t −→ t+ 1 is such that :

Lt+1 = Lt − γ

n
⟨Vgoal,V ⟩+ o(γ) (3.30)

The final result can be recovered by replacing each element by considering
(S

1
2A∗,Ω∗) = (U

√
Λ,V

√
Λ) (plus some tricks ...).

One should also note that the family {V l+1((αk,ωk))}Kk=1 of pre-activity vari-
ations induced by adding the neurons θK,∗

↔ is orthogonal for the trace scalar prod-
uct. We could say that the added neurons are orthogonal to each other (and to
the already-present ones) in that sense. Interestingly, the GradMax method Evci
et al. [2022] also aims at minimizing the loss Equation (3.23), but without avoiding
redundancy (more precision will be given in Section 4.1.1).

The λk could be used in a selection criterion, realizing a trade-off with com-
putational complexity. A selection based on the statistical significance of singular
values can also be performed. The full algorithm to compute the new neurons and
its complexity is detailed in Section 5.1 and the python module is presented in
Appendix D.

We finish this section by some additional propositions and remarks.
Proposition 3.2.5. If S is positive definite, then solving Equation (3.21) is equiv-
alent to taking ωk = Nαk and finding the K first eigenvectors αk associated to
the K largest eigenvalues λ of the generalized eigenvalue problem :

NNTαk = λSαk

Corollary 1 For all integers m,m′ such that m + m′ ⩽ R, at order one in V ,
adding m +m′ neurons simultaneously according to the previous method is equiv-
alent to adding m neurons then m′ neurons by applying successively the previous
method twice.
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Chapter 3. Expressivity Bottleneck

3.3 Convergence to zero training loss

One might wonder whether a greedy approach on layer growth might get stuck
in a non-optimal state. In this case, greedy means that every added neuron has to
decrease the loss. Since in this work, neurons are added layer per layer indepen-
dently, lets study here the case of a single hidden layer network, to spot potential
layer growth issues. For the sake of simplicity, lets consider the task of least square
regression towards an explicit continuous target f ∗, defined on a compact set. That
is, the objective is to minimize the loss:

inf
f

∑
x∈D

∥f(x)− f ∗(x)∥2 (3.31)

where f(x) is the output of the neural network and D is the training set. Proofs
and supplementary propositions are deferred to Appendix C.6, in particular C.6.4
and C.6.7.

First, if one allows only adding neurons but no modification of already existing
ones:

Proposition 3.3.1. It is possible to decrease the loss exponentially fast with the
number t of added neurons, i.e. as γtL(f), towards 0 training loss, and this in a
greedy way, that is, such that each added neuron decreases the loss. The factor γ

is γ = 1 − 1
n3d′

(
dm
dM

)2
, where dm and dM are quantities solely dependent on the

dataset geometry, d′ is the output dimension of the network, and n is the dataset
size.

In particular, there exists no situation where one would need to add many
neurons simultaneously to decrease the loss: it is always feasible with a single
neuron.

TINY might get stuck when no correlation between inputs xi and desired
output variations f ∗(xi)− f(xi) can be found anymore. To prevent this, one can
choose an auxiliary method to add neurons in such cases, for instance, random
neurons (with a line search over their amplitude, cf. Appendix C.6.3), or locally
optimal neurons found by gradient descent, or solutions of higher-order expressivity
bottleneck formulations using further developments of the activation function. Lets
name completed-TINY the completion of TINY by any such auxiliary method.

Now, if we also update already existing weights when adding new neurons, a
stronger result is obtained :

Proposition 3.3.2. Under certain assumptions (full-batch optimization, updating
already existing parameters, and, more technically: polynomial activation function
of order ⩾ n2), completed-TINY reaches 0 training error in at most n neuron
additions almost surely.
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3.3. Convergence to zero training loss

Hence we see the importance of updating existing parameters on the conver-
gence speed. This optimization protocol is actually the one that is followed in
practice when training neural networks with TINY (except when compared with
other methods using their protocol).

Note that TINY approach shares similarity with gradient boosting Friedman
[2001] somehow, as the architecture is grown based on the gradient of the loss. Note
also that finding the optimal neuron to add is actually NP-hard [Bach, 2017], but
that new neuron optimality is not needed to converge to 0 training error.

Conclusion

In this chapter, we have provided the theoretical principles of TINY, a method
to grow the architecture of a neural net while training it; starting from a very
thin architecture, TINY adds neurons where needed and yields a fully trained
architecture at the end. This method relies on the functional gradient to find
new directions that tackle the expressivity bottleneck, even for small networks, by
expanding their space of parameters. This way, we combine in the same framework
gradient descent and neural architecture search, that is, optimizing the network
parameters and its architecture at the same time, and this, in a way that guarantees
convergence to 0 training error, thus escaping expressivity bottlenecks indeed.

While transfer learning works well on ordinary tasks, for it to succeed, it needs
to fine-tune and use large architectures at deployment in order to extract and
manipulate common knowledge. TINY methodology has the advantage of being
generic and could also produce smaller models as it adapts the architecture to a
single task.
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Chapter 4. Comparison with other approaches

In this chapter, we compare TINY’s neurons initialization (Theorem 3.2.3) with
GradMax from paper Evci et al. [2022] and NORTH from paper Maile et al. [2022]
by adapting the expressivity bottleneck formalism to their frameworks. This is
feasible as those methods also study first-order loss variations and use the same pre-
activation matrix, but with an important difference: GradMax optimally decreases
the loss without caring about redundancy, while NORTH avoids redundancy but
picks random directions instead of optimal ones.

While sharing some similarities with TINY, GradMax and NORTH methods
also single out themselves by initializing one part of their new neurons to zero.
Such initialization allows for increases of architecture without modifying the output
function fθ; however, it naturally makes any performance improvement impossible.
In fact, to observe an enhancement, one would need to update the zero part of the
new neurons with the usual gradient descent. On the other hand, TINY does not
initialize any part of its new neurons to zero, and it can improve its performance
without using gradient descent. In fact, TINY can also accelerate its training (in
computation step units) compared to the usual gradient descent by computing an
amplitude factor γ on the best update of Theorem 3.2.2 as δW ∗ ← γδW ∗, and
on the new neurons of Theorem 3.2.3 as (α,ω) ← (

√
γα,
√
γω). This amplitude

factor can be computed with a simple line search and allows the architecture to be
modified with non-infinitesimal updates (γ ≫ 0). While accelerating the learning,
such amplitude factor might also be a better proxy of the usefulness of the new
neurons compared to the eigenvalues of Theorem 3.2.5.

In Section 4.1 we redefine GradMax and NORTH methods with the expressivity
bottleneck formalism and compare the computed new neurons of each method with
the ones defined in Theorem 3.2.3; then, in Section 4.2, we define the amplitude
factor and provide a theoretical intuition as well as a toy experiment to justify its
use in a search strategy.

4.1 Revisiting other NAS approaches with Expressivity
Bottleneck

In that section, we compare GradMax [Evci et al., 2022] and NORTH [Maile
et al., 2022] new neurons initialization with the initialization of Theorem 3.2.3. In
particular, we show that the fan-out weights of Theorem 3.2.5 resemble the ones
of GradMax while the fan-in weights of Theorem 3.2.5 resemble the NORTH ones.
We refer to each method with a little symbol that portrays the method, of the
shape “fan-in | fan-out weights”, the position of the zero indicating which part of
the new neurons is initialized to zero.

4.1.1 0
∣∣ ∥∇L∥2 GradMax

In this subsection, we start by recalling the GradMax paper methodology and
its optimization problem.
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4.1. Revisiting other NAS approaches with Expressivity Bottleneck

The theoretical approach of GradMax is to add neu-
rons with zero fan-in weights and choose the fan-out
weights that would decrease the loss as much as pos-
sible after one gradient step. Let Ω be the fan-out
weights of such neurons and perform the addition at
layer l − 1 at time t. After one gradient step, i.e.
t→ t+ 1, and considering a learning rate equal to 1,
the decrease of loss is :

Lt+1 ≈ Lt + ⟨∇θL, δθ⟩+ ⟨∇ΩL, δΩ⟩+ ⟨∇AL, δA⟩

Figure 4.1: One neuron
addition with GradMax
method with the nota-
tions of Figure 2.7.

Taking the direction of the usual gradient descent, i.e. δθ = −∇θL, δA =
−∇AL and δΩ = −∇ΩL = 0 because A = 0, we have :

Lt+1 ≈ Lt − ||∇θL||2 − ||∇AL||2 (4.1)

To maximize the first-order decrease of the loss with such neuron addition, the
output weights of the new neurons, as formulated in the original paper [Evci et al.,
2022] at eq (11), are the solution of :

(ω∗
1, ...,ω

∗
K) := Ω∗ = argmax

Ω
||∇AL||2 s.t. ||Ω||2 ≤ c (4.2)

for some fixed c.
Using Theorem C.5.10, we can re-write this derivative with the TINY notation :

∥∇AL∥2 =

∥∥∥∥∥∑
i

b(xi)vgoal
T (xi)Ω

∥∥∥∥∥
2

=
∥∥BVgoal

TΩ
∥∥2

=
∥∥∥ÑΩ

∥∥∥2 Ñ := BVgoal
T

It follows that the fan-out weights of the neurons are the solution of :

Ω∗ := argmax
Ω

∥∥∥ÑΩ
∥∥∥ s.t. ∥Ω∥2 ≤ c (4.3)

To make TINY comparable to GradMax, we reformulate our minimization problem
using the scalar product with the following proposition :

Proposition 4.1.1. ∀D ∈ Rp,q,B ∈ Rk,q,

∃c̃ ∈ R s.t, argmin
H

∥D −HB∥2 = argmax
H, ∥HB∥2≤c̃

⟨D,HB⟩

The proof can be found in 4.
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Taking Vgoal as D and V = ΩATB as HB, we can reformulate TINY optimiza-
tion problem 3.21 as :

A∗,Ω∗ = argmax
A,Ω

⟨V (A,Ω),Vgoalproj⟩ s.t. ∥V (A,Ω)∥2 ≤ c̃ (4.4)

We now re-write the scalar product
〈
V (A,Ω),Vgoalproj

〉
and the norm of the

constrain ∥V (A,Ω)∥. We remark that

⟨V (A,Ω),Vgoalproj⟩ = ⟨ΩATB,Vgoalproj⟩
= Tr(BTAΩTVgoalproj)

= Tr(AΩTVgoalprojB
T )

= ⟨ΩAT ,VgoalprojB
T ⟩

=
〈
AΩT ,N

〉
N := BVgoal

T
proj (4.5)

= ⟨ÃΩT ,S− 1
2N⟩ Ã := S

1
2A, S = BBT (4.6)

By performing the same change of variable Ã := S
1
2A for the constraint on

V (A,Ω), it follows that :

∥V (A,Ω)∥2 =
∥∥ΩATB

∥∥2
= Tr(AΩTΩATS)

=
∥∥∥Ω(S

1
2A)T

∥∥∥
=
∥∥∥ΩÃT

∥∥∥
TINY optimization problem is now equivalent to :

Ã∗,Ω∗ = argmax
Ã,Ω

⟨ÃΩT ,S− 1
2N⟩ s.t.

∥∥∥ΩÃT
∥∥∥2 ≤ c (4.7)

To maximize the scalar product, lets choose ÃΩT = S− 1
2N . A solution for (Ã,Ω)

is the (left, right) eigenvectors of the matrix S− 1
2N . It implies that :

Ω∗ := argmax
Ω

∥∥∥S− 1
2NΩ

∥∥∥2 s.t. ∥Ω∥ ≤ c̃ (4.8)

This last equation could have been directly induced by Theorem 3.2.3, nonetheless
the latter reasoning enables to determine what are the theoretical similarities and
differences between GradMax and TINY optimization problems :
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GradMax TINY
argmaxΩ ∥∇AL(fθ)∥2 s.t. ∥Ω∥ ≤ c argmaxA,Ω

〈
AΩT ,N

〉
s.t.

∥∥ΩATB
∥∥2 ≤ c

=⇒ =⇒

argmaxΩ

∥∥∥ÑΩ
∥∥∥2 s.t. ∥Ω∥2 ≤ c argmaxΩ

∥∥∥S− 1
2NΩ

∥∥∥2 s.t. ∥Ω∥ ≤ c̃

Table 4.1: Optimization problems defining the fan-out weights of the new neurons
for GradMax method (left) and TINY method (right).

Figure 4.2: In green the TINY notations, in purple the notations of Maile et al.
[2022].

First, the matrix Ñ is not defined using the projection of the desired update
Vgoal

l+1
proj. As a consequence, GradMax does not take into account redundancy and,

on the opposite, will actually try to add new neurons that are as redundant as
possible with the part of the goal update that is already feasible with already-
existing neurons. Such redundancy is avoided when Ñ = N , that is, when the
best update is 0. We note that there is an equivalence between the best update is
equal to 0 and the usual gradient is equal to 0 (cf Theorem C.5.11).

Second, the constraint lies in the weight space for the GradMax method, while
it lies in the pre-activation space in TINY. The difference is that GradMax relies
on the Euclidean metric in the space of parameters, which arguably offers less
meaning that the Euclidean metric in the space of activities. Essentially, this is
the same difference as between the standard L2 gradient w.r.t. parameters and
the natural gradient, which takes care of parameter redundancy and measures all
quantities in the output space in order to be independent of the parameterization.
In practice, we do observe that the "natural" gradient direction improves the loss
better than the usual L2 gradient.

Third, TINY fan-in weights are not set to 0 but directly to their optimal values
(at first order).

4.1.2 X⊥
∣∣ 0 NORTH/ RandomProj
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In the paper Maile et al. [2022], when adding neurons at layer l − 1, the fan-
out weights are initialized to 0, while the fan-in weights are picked within the
kernel (preimage of {0}) of an application describing already existing neurons.
Two such applications are proposed, respectively the matrix of fan-in weights and
the pre-activation matrix, yielding two different notions of orthogonality. The
first orthogonality definition is on the fan-in weights, hence the new neurons are
initialized to expand the span of the lines of Wl−1. Formally, the fan-in weights
of the new neurons are initialized as :

αw = PKer(Wl−1) r r ∼ N (0, I) (4.9)

where the index w stands for weights, and where the function

PKer(.) : W 7→
(
I −W T (WW T )+W

)
(4.10)

is the projection onto the kernel of the lines of the matrix W . In the original paper,
this function is approximated with a concatenation of vectors that are orthogonal
to the columns of the matrix Wl−1, noted VKer(W T

l−1)
. The second orthogonality

metric is on the functional space of pre-activity at layer l−1. To increase the space
of such functional space, the fan-in weights of the new neurons are initialized as :

αact = S+Bl−2VKer(Al−1)r with r ∼ N (0, I) (4.11)

where the index act stands for activation, and where VKer(Al−1) ∈ Rn,n−Ml−1 is the
concatenation of n −Ml−1 vectors that are orthogonal to the lines of the matrix
Al−1 ∈ RMl−1,n, where Ml−1 is the size of al−1 and is also a proxy of the rank
of Al−1 when n is large. Here, S is, as before, the covariance matrix of Bl−2, ie
S = 1

n
Bl−2B

T
l−2.

On the other hand, fan-in weights in TINY method are initialized as the left
eigenvectors of the matrix :

S− 1
2Bl−2Vgoal

T
proj = S− 1

2Bl−2Vgoal
T
proj (4.12)

= S− 1
2Bl−2(Vgoal − VgoalB

T
l−1

(
Bl−1B

T
l−1

)+
Bl−1)

T (4.13)

= S− 1
2Bl−2PKer(Bl−1) V

T
goal (4.14)

Considering vi the right eigenvectors of the matrix S− 1
2N , then, TINY initializa-

tion is, up to a multiplication factor, equal to :

αTINY
i = S− 1

2S− 1
2Bl−2PKer(Bl−1) V

T
goalvi (4.15)

= S+Bl−2PKer(Bl−1) V
T
goalvi (4.16)

A first difference is that NORTH bases its theory on the space of pre-activation
at layer l− 1 while TINY focuses on the pre-activation at layer l. Then the other
main difference is that TINY uses the backpropagation to find the best vi directly,
while the NORTH approach tries random directions r to explore the space of
possible neuron additions. For that reason, we rather call the NORTH method the
RandomProjection or RandomProj method.
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NORTH TINY

S+Bl−2VKer(Al−1)r S+Bl−2PKer(Bl−1) V
T
goalvi

Table 4.2: Fan-in weights initialization for NORTH method (left) and TINY
method (right).

4.1.3 TINY ≈ X⊥
∣∣ 0 + 0

∣∣ ∥∇L∥2 ?

The neurons of TINY method, as defined in Theorem 3.2.3, share similarity
with the RandomProj’s ones for the fan-in weights and with the GradMax’s ones
for the fan-out weights. However, by initializing no side of the layer to zero, TINY
new neurons have an effect on the loss with no need for a gradient step, while
GradMax and RandomProj need this procedure to observe a decrease in loss. In
practice, before adding the new neurons, we multiplied them by an amplitude
factor γ found by a simple line search, i.e. we add (

√
γα,
√
γω). We discuss the

amplitude factor in the next section.

4.2 Moving away from first-order approximation

While TINY methodology relies on first-order approximations (vgoal = −∇aL,
v := ∂a

∂θ
δθ) to estimate the neurons to add, we leave this setting in this section by

considering a non-infinitesimal amplitude factor on the new neurons. This would
benefit the growth from the empirical and theoretical point of view as explained in
this section. Note that such amplitude factor is useless for GradMax and NORTH
initializations as one part of their neurons is set to zero.

4.2.1 Definition of the amplitude factor

Once the new neurons are computed using Theorem 3.2.3, they are added to the
architecture with an amplitude factor γ, i.e. (αi,ωi)← (

√
γαi,

√
γωi). When this

factor is chosen arbitrarily small, the first order approximation of Theorem 3.2.5
holds, but the impact on the loss is hardly noticeable as being infinitesimal in γ.
In practice, we would rather choose a relatively large γ and leave the first approxi-
mation setting to observe a clear impact on the loss and to accelerate the training.
To choose γ correctly, we perform a line search by looking for the value of γ, which
decreases the loss the most on a mini-batch Xγ which might be different from
the mini-batch used to estimate the new neurons and the best update. By doing
so, the neuron addition pipeline becomes a three-steps procedure; first compute
the new neurons using Theorem 3.2.3 and choose a maximum number of neurons
to add nd ≤ K∗, then normalize the fan-in weights {αi}nd

i=1 and fan-out weights
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{ωi}nd
i=1of the new neuron as:

α∗
k ← α∗

k ×
1√

||(α∗
j)

nd
j=1||22/nd

ω∗
k ← ω∗

k ×
1√

||(ω∗
j )

nd
j=1||22/nd

(4.17)

Finally, multiply them by the amplitude factor γ∗ :

α∗
k, ω∗

k ← α∗
kγ

∗, ω∗
kγ

∗ s.t. γ∗ := argmin
γ∈[0,u]

∑
xi∈Xγ

L(fθ⊕γθ
nd↔
(xi),yi)

where u > 0, γθnd
↔ = (

√
γα∗

k,
√
γω∗

k)
n∗
d

k and the operation θ⊕γθK↔ is the concatena-
tion of the neural network with the new amplified neurons. In practice the interval
[0, u] is approximated by the set of values {hk | k ∈ Z, 1e−8 < hk < u} for some
chosen h.

With the same logic, let us define the amplitude factor for an update of ar-
chitecture δθ as the positive factor to multiply δθ with before adding it to the
architecture. In this case, after normalizing δθ by its norm as δθ ← δθ/ ∥δθ∥, the
amplitude factor γ∗ is defined as :

δθ ← γ∗δθ s.t. γ∗ := argmin
γ∈[0,u]

∑
xi∈Xγ

L(fθ+γδθ(xi),yi) (4.18)

In particular, the amplitude factor will be used for the best update, i.e. δθ = δW ∗.

4.2.2 Theoretical justification of the amplitude factor : A fair
comparison of the loss decrease

∑
i λ

2
i

Apart from accelerating the training, using a relatively large γ∗ has a theo-
retical advantage if one wants to choose at which layer neurons should be added
first. At first sigh, the eigenvalues of Theorem 3.2.5, as quantifying the first-order
impact of the new neurons on the loss, define a natural criterion to select such a
layer, for example, we could choose the layer whose new neurons have the high-
est eigenvalues. However, this criterion is empirically less effective than the naive
method, which adds neurons in the order of the layers (Section 4.2.3), and it can
be theoretically explained by comparing the desired update between two successive
layers. Indeed, the desired update at layer l is actually a function of the desired
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4.2. Moving away from first-order approximation

update at layer l + 1 as:

vgoal
l(x) = −∇al(x)ℓ(x) (4.19)

= −∂al+1(x))

∂al(x)

T

∇al+1(x)ℓ(x) (4.20)

= −
(
∂ (σl+1(Wlal(x)))

∂al(x)

)T

∇al+1(x)ℓ(x) (4.21)

= −
(
∂σ(u)

∂u |u=Wal(x)
Wl

)T

ℓ(x) (4.22)

= K(x)vgoal
l+1(x) (4.23)

where K(x) :=
(

∂σ(u)
∂u |u=Wal(x)

Wl

)T
. Considering independently the best neu-

rons to add at layer l and l + 1 of Theorem 3.2.3, their associated updates, i.e.
vl and vl+1, and then using Equation (3.24), one can deduce that comparing
the eigenvalues of Theorem 3.2.3 is equivalent to compare 1

n

〈
V l,Vgoal

l
proj

〉
to

1
n

〈
V l+1,Vgoal

l+1
proj

〉
. We transform those two scalar products to make them com-

parable :〈
V l,Vgoal

l
proj

〉
and

〈
V l+1,Vgoal

l+1
proj

〉
(4.24)

=
〈
V l,Vgoal

lPKer(Bl−1)

〉
=
〈
V l+1,Vgoal

l+1PKer(Bl)

〉
(4.25)

=
〈
V l,KTVgoal

l+1PKer(Bl−1)

〉
=
〈
V l+1PT

Ker(Bl)
,Vgoal

l+1
〉

(4.26)

= Tr
(
PKer(Bl−1)V

lTKTVgoal
l+1
)

(4.27)

=
〈
KV lPKer(Bl−1),Vgoal

l+1
〉

(4.28)

Where Equation (4.26) is obtained with the property Tr(AB) = Tr(BA) and
Equation (4.25) is obtained using Equation (4.13). From the last equation, on
can see that the left scalar product is highly dependent on the matrix K =
∂σ(u)
∂u |u=Wal(x)

Wl, which is itself highly amplitude dependent on the weight ma-
trices Wl. It implies, that without any assumption on the weight matrices of the
network, the amplitude of the previous scalar products might be artificially am-
plified, making the comparison between those two (and doing so between their
associated eigenvalues) meaningless. A nicer way to choose where to add the new
neurons would be to estimate the non-linear impact of those new neurons on the
loss and it seems that performing a line search on γ would estimate a nice proxy
of this impact.

4.2.3 Empirical justification of the use of the amplitude factor
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In this section, we show empirically that choosing where to perform neuron
addition with the amplitude factor γ is more relevant than performing such choice
on the eigenvalues of Theorem 3.2.3. To do so, we increase the architecture of
networks one neuron by one neuron, and compare the performances of the growing
networks with different addition strategies; the Naive strategy adds neurons in
the order of the layer index; the MaxEigenvalue strategy adds neurons where the
first eigenvalue of Theorem 3.2.3 is the highest; the AmplitudeFcator strategy adds
neurons where the decrease of loss ∆ := L(fθ)− L(fθ⊕γ∗θ1↔) is the highest.

The experiment is performed on a simulated and balanced dataset {xi,yi}500i=1

with x ∼ N (0, I50) and y = argmaxk=1,...,10

{
sin(k

∑50
j=1 x[j]

}
, where x[j] is the

j− th coordinate of x. To plot Figure 4.3, a two linear layer network is initialized
with one neuron by hidden layer and its architecture is grown for a given strategy
s. The growing process is the repetition of the following iteration: select a depth
d with the strategy s, increase the network at depth d with one neuron, then
update all the network layers with its best update. For all the strategies the new
neurons and the best updates are added to the architecture with an amplitude
factor and no training is performed between each modification of architecture.
The full algorithm to grow the network architecture is described in Algorithm 3,
in which the number of iterations T has been set differently depending on the
strategy. It is equal to 100 for the Naive and the Amplitude factor strategy, but
for the eigenvalue strategy, which is slower to converge to full expressivity, this
number of iteration has been set to 200.

The best updates, the new neurons, and the amplitude factors are performed
on the overall dataset. The accuracy of Figure 4.3 is also evaluated on the overall
dataset and after each update of architecture (neurons addition or best update),
which defines the step unit of the top plots.

In the figure Figure 4.3, we observe that the network whose growing strategy
is based on the amplitude factor, γ∗, and its decrease of loss ∆γ∗ , have the most
interesting curve on all the plots. On the top left plot, its accuracy is the highest
at any step, and its Pareto front shows a better ratio between the performance and
the number of parameters. On the other hand, we observe that a network whose
architectures is increased with the eigenvalues criterion has the worst performances.
Indeed, on the top left figure, its accuracy curve is the lowest at any step of
the growing process; on the top right figure, its complexity is the highest at the
beginning of the experiment; and, in the bottom plot, it has the worst Pareto
front: accuracy versus the number of parameters (bottom plot). Nonetheless, we
observe that its complexity velocity significantly decreases around 250 steps (top
right plot) while its accuracy increases (top left plot). Those two tendencies impact
its Pareto front, which almost catches up with the curves of the other strategies.
However, it still needs extra-growing steps to achieve full expressivity, as shown
in the top figures. We can explain this change of dynamic in the Pareto front
for the eigenvalues strategy as so: first, let us remark that the dimension of the
input (50) is greater than the dimension of the output (10), making a neuron
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4.2. Moving away from first-order approximation

addition at the first layer more expansive in terms of parameters than a neuron
addition at the second layer. Then, regarding the top right plot, we can deduce
that networks grown with this strategy add more neurons at the first layer at the
beginning of the experiment (the red curve being above the blue curve). Those
neuron additions are less interesting in terms of performance and complexity, but
they enhance the expressivity of the first layer in the sense that they increase
considerably its dimension and potentially the available information usable for
neurons at the second layer. In the middle of the experiment (300 steps on the
top plots), it is likely that the information of the dataset passed the first layer and
is now available to be transformed by neurons at the second layer as the method
only adds neurons at the second layer. This change of layer to perform the neuron
addition slows the evolution of the complexity, and the available information at
layer one greatly enhances the performance at each neuron addition at layer two.
However, this remark should be taken with a grain of salt as it might greatly
depend on the setting of the considered experiment, such as the dimension of the
input and the output, the number of layers, and the starting number of neurons
per layer.

Conclusion

TINY has a lot in common with the GradMax and the NORTH methods, and in
some sense, it bridges the gap between the two. Furthermore, TINY can accelerate
its training using an amplitude factor γ, which is also a more informative indica-
tor to construct a search strategy compared to the eigenvalues of theorem 3.2.3.
Indeed, those eigenvalues can be artificially amplified by the weights matrices,
making any comparison of eigenvalues between layers meaningless. To construct a
strategy of adding, instead of focusing only on the impact of the new neurons, one
could also compare the contribution of the new neurons at layer l (

∑
k λ

2
i ) with the

first-order impact of updating the current weight matrices at layer l (∥∇W lL∥2).
As such comparison would be done at the same layer, it would not suffer from
any amplifying phenomenon, and it would define a search strategy that makes a
trade-off between the possible enhancement due to the current network and the
potential enhancement due to the increase of architecture.
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Figure 4.3: Accuracy and number of parameters of growing networks on a simu-
lated dataset with different addition strategies.
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Algorithm 3: Grow a network with the strategy s

Data: s : Strategy
Result: Neural Network N
Initialize a two linear layers network with one neuron per layer;
for t in [1, ..., T ] do

depth = s(t);
Compute the first neuron α1, ω1 of Theorem 3.2.3 at depth;
Compute the amplitude factor γ∗ for this new neuron;
Multiply the neuron with its amplitude factor;
Add it to the architecture;
Evaluate the performances of the network;
for d in [1, 2, 3] do

Compute the best update at layer d and its amplitude factor;
Multiply the best update with its amplitude factor;
Update the architecture with this best update;
Evaluate the performances of the network;

end
end

Algorithm 4: Select depth to grow the network
Data: s : Strategy, t : iteration
Result: depth where to add a neuron
if s = Naive then

depth = np.mod(t, 2) + 1;
else if s = MaxEigenValue then

for d in [1, 2] do
Compute the first eigenvalue λd

1 of Theorem 3.2.3 at d;
end
depth = argmaxd=1,2{λd

1};
else if s = AmplitudeFactor then

for d in [1, 2] do
Compute the first neuron α1, ω1 of Theorem 3.2.3 at d;
Compute the amplitude factor γ∗ for this new neuron;
Evaluate the decrease of loss ∆d if the architecture is expanded
with (

√
γ∗α1,

√
γ∗ω1)

end
depth = argmaxd=1,2{∆d};

return depth;
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Chapter 5. TINYpub and experiments

Introduction

In this chapter, we present the main functions of the python module TINYpub,
which constructs the best update of the current parameters of the network as
defined in Theorem 3.2.2 and the new neurons as defined in Theorem 3.2.3. We
show that the best update and the new neurons can be obtained very similarly with
one forward and one backward pass and that their computations complexities are
comparable with the usual gradient procedure. We apply our module TINYpub
to search for architecture on three academic datasets MNIST [LeCun et al., 1998],
CIFAR10 and CIFAR100 [Krizhevsky et al., 2009], and show, empirically, that
a naive strategy on top of Theorems 3.2.2 and 3.2.3 can grow neural network
architectures to zero training loss within fewer time steps than the theoretical
bound of Section 3.3.

We start this chapter by presenting the main functions of TINYpub and their
complexities. Then, we provide proofs of concept for our search strategy on MNIST
and CIFAR10 datasets, and, finally, on CIFAR100 dataset, we compare our grow-
ing technique with other existing methods. All our code and experiments are
available at https://gitlab.inria.fr/mverbock/tinypub/thesis.

5.1 Core strategies and associated complexities

When growing a network as in Chapter 3, we aim at reducing the expressivity
bottleneck at all the layers l of the network architecture. This is done by comput-
ing, at each layer, the best update δW ∗ at layer l− 1 (Theorem 3.2.2), and then,
by computing the new neurons {αi,ωi}Kk at layer l − 1 (Theorem 3.2.3). Those
two quantities are very alike and can be calculated with the same logic, as, by
construction, they are symmetric in the covariance matrix of post-activities, i.e.
S := BBT and in the covariance matrix of post-activities with desired update
N := BVgoal

T . This property is illustrated by the following lemma :

Lemma 5.1.1. Considering a batch of size n to construct the post activation and
the desired update matrices, then for any depth l and z ∈ {1, 2}, noting S−z :=
1
n
Bl−zB

T
l−z and Nz :=

1
n
Bl−z

(
Id − 1z=2B

T
l−1S

+
−1Bl−1

)
Vgoal

T
l , we have that

δW ∗
l = F l

BU(S−1,N−1) (5.1)

{α∗
i ,ω

∗
i }Kk = F l

NN(S−2,N−2) (5.2)

where the functions F l
BU and F l

NN are defined respectively in Theorem 3.2.2 and
Theorem 3.2.3 and their implementations are given in Algorithm 5 and Algo-
rithm 6.

The functions FBU and FNN perform similar operations, which are: inverting
or performing of S−z (which equivalent in terms of basic operations) and finally
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5.1. Core strategies and associated complexities

multiplying S−z with N−z. Consequently, the time complexity of F l
NN is the same

as the function F l
BU , which will be detailed now. Define the function :

FBU : l ∈ {1, ..., L} 7→ δW ∗ (5.3)

The following lemma holds :

Lemma 5.1.2. Note C(F ) the computational complexity of the function F as the
number of basic operations needed to compute F (l) for any l ∈ {1, ..., L} with a
batch of size n, then, using the notations of Figure 5.1 and assuming that all layers
have the same width or kernel, it follows that, for a batch of size n :

C
(
FBU

)
= C

(
FGD

)
+O

(
nP (SW )2 + (SW )3

)
(5.4)

Where the function FGD computes the usual gradient update at one layer.

Proof of Theorem 5.1.2 :
We assume that all layers have the same width (W) or kernel (S) and we
use the notations of Figure 5.1. Furthermore, for a linear layer, we have
S = P = 1. We take a batch of size n and perform a forward and backward
pass to obtain the matrices Vgoal

l and Bl−1.
For linear layers, Bl−1 and Vgoal

l are in RW,n, and, for convolutional
layers, Bl−1 and Vgoal

l are respectively in RnP,SW and RnP,W (see The-
orem C.1.1). Hence computing the associated matrices S−1 and N−1,

has a cost in O(nW 2) = O(n

=1︷︸︸︷
P (

=1︷︸︸︷
S W )2) for linear layers and in

O(nP (SW )2 + nPW 2) = O(nP (SW )2) for convolutional layers.
At this point, the matrices S−1 and N−1 are in RSW,SW and RSW,W for both
the linear and convolutional cases. We invert the matrix S−1, that is an
operation at cost (SW )3 and finally we multiply S+

−1 with N−1 which is in
(SW )2W operations.
In total, updating the architecture with the best update instead of the gradi-
ent descent requires an extra computational cost of O (nP (SW )2 + (SW )3).

Once the best update and the new neurons are computed, a line search is
performed on those quantities as defined in Section 4.2.1. This operation is as
costly as doing a forward pass, as the loss is evaluated for a specific batch at
different values of γ, and γ∗ is chosen as the one that decreases the loss the most.

We now compare this computational cost with the complexity of a standard
update with a gradient descent considering a batch of size nGD, where GD stands
for gradient descent. Performing the forward and backward pass has a complexity
of nGDW

2SPL. Considering adding neurons at all the layers, the relative added
complexity w.r.t. the standard training part is thus:
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Figure 5.1: Notation and size for convolutional and linear layers, P : number of
pixels by channel, S : kernel size, W : number of filter or neurons. For linear layers,
we take the convention that S = P = 1.

L (nP (SW )2 + (SW )3)

nGDW 2SPL
=

Computing
S and N︷︸︸︷

nS

nGD

+

Performing
SVD︷ ︸︸ ︷
S2W

nGDP
(5.5)

In the fully connected network case, S = 1, P = 1, and the relative cost
of the SVD is then W/nGD. It is then negligible, as layer width W is usually
much smaller or comparable than nGM , which is typically 102, for instance. In the
convolutional case, S = 9 for 3× 3 kernels, and P ≈ 1000 for CIFAR, P ≈ 100000
for ImageNet, so the SVD cost is negligible as long as layer width W << 10000
or 1 000 000 respectively. So, one needs no worrying about SVD cost. On the
contrary, estimating the matrices (to which SVD is applied) can be more resource-
demanding. The factor nS/nGD can be large if the minibatch size n needs to be
large for statistical significance reasons. One can show that an upper bound to
the value required for n to ensure estimator precision (appendix D.4) is (SW )2/P .
In that case, if W >

√
nGDP/S3, these matrix estimations will get costly. In the

fully connected network case, this means W >
√
nGD ≈ 10 for nGD = 100. In the

convolutional case, this means W >
√

nGDP/S3 ≈ 60 for CIFAR and ≈ 600 for
ImageNet. It is possible to work on finer variance estimation and on other types of
estimators to decrease n and, consequently, this cost. Actually (SW )2/P is just an
upper bound on the value required for n, which might be much lower, depending
on the rank of computed matrices.

In practice. In our experiments the cost of a full training with TINY architec-
ture growth approach is similar (sometimes a bit faster, sometimes a bit slower)
than a standard gradient descent training using the final architecture from scratch.
This is great as the right comparison should take into account the number of dif-
ferent architectures to try in the classical neural architecture search approach.
Therefore, it is possible to get layer width hyper-optimization for free.
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Algorithm 5: BestUpdate
Data: l : index of a layer, n : batch size
Result: Best update at l
Take a minibatch X of size n;
Compute (S,N) with MatrixSN(l, −1, n);
δWl = NTS−1;

Algorithm 6: NewNeurons
Data: l : layer to add neurons, δW : best update at l + 1, n : batch size
Result: Best neurons at l
S,N = MatrixSN(l + 1,−2, n, δW = δW );
Compute the SVD of S := QΣQT ;
Compute the SVD of Q

√
Σ

−1
QN := ÃΛΩT ;

A = QΣ− 1
2QT Ã;

Algorithm 7: MatrixSN
Data: l : layer, z : index, n : batch size, δW = None : best update
Result: Matrices S and N
Take a minibatch X of size n;
PropagateX and backpropagate ;
Compute Vgoal at l, ie −∂Ltot

∂Al
;

if δW ̸= None then
Vgoal −= δWBl−1

end
S,N = 1

n
Bl−zBl−z

T , 1
n
Bl−zVgoal

T ;

Algorithm 8: Amplitude Factor
Data: δW = None : best update, {αi,ωi}Ki=1 = None : new neurons ,

s = 1e− 4 : threshold, exp = 2 : speed, M = 0 : batch size
Result: Best amplitude factor γ∗

Take a minibatch X of size M ;
Evaluate the loss Lref on X;
Normalize δW or {αi,ωi}Ki=1 by its norm (4.17);
for γ ∈ [expk for k in range(⌊−8 logexp(10)⌋, 1) do

Scale δW or {αi,ωi}Ki=1 with γ and update the architecture with it;
Evaluate the loss Lγ on X;
Undo the actions of the line in purple;

end
γ∗ = argmin γ Lγ;
if Lref−Lγ∗

Lref
< s then

γ∗ = 0;
end
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5.2 Proof of concept

In this section, we design a naive search strategy on top of the module TINYpub,
and show, on MNIST and CIFAR10 datasets, that we can reach full expressivity
on the training set within fewer steps than the theoretical upper bound of Theo-
rem 3.3.2. To achieve such objective and to prove that this property is only the
consequence of the reduction of the expressivity bottleneck, we remove the usual
gradient descent from the optimization process and only update neural network
architecture with the best update from Theorem 3.2.2 and the addition of the new
neurons from Theorem 3.2.3, both scaled with an amplitude factor. To remove the
variation in performance estimation and to ensure the strict monotonicity of the
performance, the new neurons, the best updates, and the amplitude factors are
estimated on the whole training set.

5.2.1 MNIST

This section focuses on the academic dataset MNIST. All plots are averaged
over three independent runs and have been performed on four CPUs. The associ-
ated notebooks can be found in the folder thesis/MNIST/ of the module TINYpub.

To plot Figure 5.2, we initialize randomly a feed-forward network with two
hidden layers with selu activation function and one neuron per hidden layer. The
network is then grown by iteratively looping 10 times on both layers, and at each
layer l, increasing the architecture with the 10th first neurons of Theorem 3.2.3.
After each neurons addition, the architecture is updated with the best update at
all its layers. Each computed quantity ({αi,ωi}10i=1 or δW ∗) is scaled with an
amplitude factor (Section 4.2.1) before it is added to the architecture. As stated,
the best update, the new neurons, and the amplitude factor are estimated on the
full training to remove variation in performance estimation. The algorithm for this
experiment is described in Algorithm 9.

The results are plotted on Figure 5.2 where four variables are evaluated on all
training or test sets as a function of time in seconds. In all the figures, a black
vertical line has been drawn to indicate the time at which we start to observe
overfitting.

The top figure of Figure 5.2 is the accuracy and the number of neurons per layer
(nlayer) through time. The accuracy increases rapidly during the first 50 seconds,
achieving 91.7 % on train and 90.4 on test at the black line; then, it increases very
slowly and eventually almost overfits the training set with an architecture of 90
neurons per layer, which is far less than the theoretical upper bound of 50 000 of
Theorem 3.3.2.

The middle plot is the ratio between the sum of the 10th first eigenvalues λ2
k

of Theorem 3.2.3 and the squared norm of the projected desired update. This
ratio can be interpreted with Equation (3.22) as the ratio between the expressivity
bottleneck solved by the new neurons (

∑
k λ

2
k) over the expressivity bottleneck

which had to be solved (Ê
[
||vgoal(x)

l||2
]
:= Ψl

θ). This ratio goes quickly to 0 while
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Figure 5.2: Experiments on MNIST for three independent runs. Top plot : Accu-
racy on full training and test set and number of parameters as a function of time;
middle plot : ratio of expressivity bottleneck solved when adding neurons at layer
l as a function of time; bottom plot : norm of desired update divided by its shape
at all the layers as a function of time. The y-axis is the same for all plots and is
the time in seconds.
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Algorithm 9: NaiveArchitectureGrowth
Data: A: starting architecture;

Dtr : training dataset, Dte : test dataset;
T = 10 : number of iterations ;

Result: network N
Initialize network N with the architecture A;
L = depth(N) // number of layers of N
n = len(Dtr) // size of the batch to estimate

// the best update, the new neurons
// and the amplitude factor

for j in range(T) do
for l in {1, ..., L-1} do

δW ∗
l+1 = BestUpdate(l + 1, n);

{αi,ωi}Ki=1 = NewNeurons(l, n, δW ∗
l+1);

take only the 10th first neurons, ie K = 10;
γ∗ = AmplitudeFactor({αi,ωi}10i=1,M = n);
if γ∗ > 0 then
{αi,ωi}10i=1 ← {

√
γ∗αi,

√
γ∗ωi}10i=1;

Update the architecture with those neurons;
end
Compute the accuracy atr, atr on Dtr and Dte;
for d in {1, ..., L} do

δW ∗
d = BestUpdate(d, n);

γ∗ = AmplitudeFactor(δW ∗
d ,M = n);

δW ∗
d ← γ∗δW ∗

d ;
update the architecture with δW ∗

d as Wd ←Wd + δW ∗
d ;

Compute the accuracy atr, ate on Dtr and Dte;
end

end
end
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we observe overfitting, which indicates that the added neurons are not significantly
decreasing the expressivity bottleneck and might be unnecessary to the growth.

The bottom plot is the evolution of the norm of the desired update divided
by its shape during the experiment. At the beginning of the experiments, while
the network architecture is thin, we remark that the norm of that variable is close
to zero. It is because no information can go through the network, as the loss
function might not depend on a1, making the functional derivative ∇a1L almost
null. This phenomenon is highly visible when using the relu activation functions on
thin architectures as the post-activity b1 (after the relu) might return 0 for almost
every x inducing ∇a1L = 0. However, the norm of the desired update increases as
the network grows and as relevant information in pre-activity al could be used to
decrease the loss. At the end of the experiment, the norm of the desired update
stagnates, and as explained in Section 4.2.1, we might not compare the norm of
the desired update between layers as the weight matrices artificially modify the
magnitude of vgoal

l from one layer to another.
The line colors are matched according to the layers of interest, that is, the

number of neurons in layer l for the top plot is of the same color as the evaluation
of the ratio when adding neurons at l for the middle plot, that is itself of the same
color as the evaluation of the desired update at layer l+ 1 for the bottom plot, as
neurons are added at l to reduce the expressivity bottleneck at l + 1.

5.2.2 CIFAR10

In this section, the same type of experiment is performed but for the CIFAR10
dataset. As before, the objective is to overfit the training set in a few steps. All the
curves are averaged over three independent runs and are performed on four CPUs,
and all the plots and scripts can be found in the folder thesis/CIFAR10 of the
module TINYpub. The growth protocol is the same as for the MNIST experiment
and is described in Algorithm 9.

While only one starting architecture was tested in the previous section, here,
three types of starting architectures are considered. Lets note kC-k’L a feed-
forward architecture with k convolutional layers followed by k′ fully connected
layers, all with the selu activation function. Using this notation, we performed
the same experiment as in Section 5.2.1 but with the starting architecture 2C-2L,
5C-1L and 1C-5L with one neuron per hidden layer. The performances are sum-
marized on Table 5.1 and the details for each starting architecture are in the
Figures 5.3 to 5.5. The variables of the figures are the same as for Figure 5.2, but
the first plot has been separated into two parts with the accuracy in the top plot
and the number of neurons below.

At the end of each experiment on Figure 5.3 (2C-2L) and Figure 5.4 (5C-1L), we
notice that the relative bottleneck solved order themselves according to the depths,
in decreasing order for the middle plot and in increasing order for the last plot.
In Table 5.1, we note that the networks 2C2L and 5C1L achieve full expressivity
on the training set but also exhibit strong overfitting, as their accuracy on the
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Accuracy Final Complexity
T ∗ (seconds)

archi. Train Test Parameters Operations
2C2L 1.0± 0.0 0.37± 0.00 3.8 105 4.8 106 3.5 104

5C1L 1.0± 0.0 0.30± 0.00 1.6 105 2.2 106 1.2 105

1C5L 0.7± 0.1 0.22± 0.02 3.8 105 9.6 105 8.0 104

Table 5.1: Accuracy, memory, and time complexity of growing networks starting
from the architectures 2C2L, 5C1L and 1C5L on CIFAR10 dataset for two indepen-
dent runs. Accuracy and complexity are evaluated at t = T ∗ where T ∗ is the time
of search in seconds at which the networks reach 99% accuracy on the training set
with 4 CPUs. As full expressivity is not achieved for the architecture 1C5L, its T ∗

is set to the duration of the overall experiment. The accuracy is evaluated on the
overall train and test dataset, and the complexity is measured as the number of
parameters and the number of basic operations performed at the test.

test set saturates around 30%. for all architectures. This overfitting was expected,
as the CIFAR-10 dataset is more complex than the MNIST dataset. To achieve
better generalization, one would need to use a more advanced architecture, such as
ResNet or VGG. Additionally, we observe that the search time T ∗ in Table 5.1 is
quite large (over 10 hours!). However, this could have been significantly reduced.
First, by stopping the experiments earlier—for instance, when there is no further
improvement in test set accuracy. Second, we chose to estimate new neurons and
determine the best update using the entire dataset. Instead, we could have used
a smaller subset for these estimations, thereby reducing the computational cost of
each step in the growth process.

5.3 CIFAR100

In this section, we grow a neural network on CIFAR100 dataset and compare
our new neurons initialization strategy with the GradMax and the random ap-
proaches.

5.3.1 Comparison with GradMax

In this section, TINY method is compared with the GradMax method of Evci
et al. [2022]. While the theoretical comparison with that method has already been
done in Section 4.1.1, here an empirical comparison is provided. To ensure an in-
structive comparison with the original paper of GradMax, the experiment of their
paper have been reproduced but with various settings. In particular, the architec-
ture of a ResNet18 is grown starting from either a quarter or from a sixty-fourth
of its usual number of neurons, and, between each neuron addition, the network
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Figure 5.3: Experiments on CIFAR10 for two independent runs starting with the
architecture 2C2L. Top plot : Accuracy on full training and test set; second plot
: number of parameters as a function of time; third plot : ratio of expressivity
bottleneck solved when adding neurons at layer l as a function of time; bottom
plot : norm of desired update divided by its shape at all the layers as a function
of time. The y axis is the same for all plots and is the time in seconds.
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Figure 5.4: Same description as Figure 5.3 but for the starting architecture 5C1L
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Figure 5.5: Same description as Figure 5.3 but for the starting architecture 1C5L
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Figure 5.6: Test accuracy as a function of the number of parameters during archi-
tecture growth from ResNets to ResNet18. The left (resp. right) column is for the
starting architecture ResNet1/4(resp. ResNet1/64). The upper (resp. lower) row
is for ∆t equal to 0.25 (resp. 1) epoch. Each line corresponds to an independent
run; 4 runs are performed for each setting.

is trained for a quarter of an epoch or for a full epoch. In the experiment of the
original paper of GradMax, the network starts with one-fourth of its architecture,
and it is trained until convergence between each neuron addition.

By construction, the objective of GradMax is to decrease the loss as fast as pos-
sible considering an infinitesimal increment of new neurons. The main difference
is that GradMax does not take into account the expressivity of the current archi-
tecture as TINY does in Equation (3.21) by projecting vgoal (see Section 4.1.1).
In the following experiment, it is shown on the CIFAR-100 dataset that solving
Equation (3.21) instead of Equation (4.3) (defined by GradMax) to grow a network
using a naive strategy allows better final performance and almost full expressivity
power. To do so, the GradMax method has been re-implemented and its growing
process, which consists of increasing the architecture of a thin ResNet18 until it
reaches the architecture of the usual ResNet18, has been mimicked. This process
is described in the pseudo-code Algorithm 11, where two parameters can be cho-
sen : the relative thinness s of the starting architecture, w.r.t. the usual ResNet18
architecture Table D.2 (s = 1/4 or s = 1/64), and the amount of training time
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5.3. CIFAR100

between consecutive neuron additions (∆t = 1 or ∆t = 0.25 epochs). The function
NewNeuron is also redefined in Algorithm 10 to compute the new neurons for the
GradMax and TINY methods. The number of parameters and the performance
of the growing network are evaluated at regular intervals to plot Figure 5.6. We
note that both methods reach their final accuracy within less than one GPU day,
outperforming, by far, other NAS search methods in their category (cf Figure 2.6).

Once the models have reached the final architecture ResNet18, they are trained
for 250 epochs (or 500 epochs if they have not converged on the training set). the
final performances are summarized in Table 5.2. We added Table 5.3, which gives
the performance of a ResNet18 trained from scratch by the usual gradient descent
with all its neurons,. It is not expected that TINY or GradMax achieve the
performance of the reference, as its architecture and optimization process have
been optimized for years. The column small references corresponds to the training
of the architecture ResNet18s for s = 1/4 and s = 1/64 using standard gradient
descent without any increase in architecture.

The details of the protocol can be found in the annexes (Appendix D.3), as
well as other technical details such as the dynamic of the training batch size (Ap-
pendix D.4.1) and the number of examples used to estimate and solve the ex-
pressivity bottleneck (Appendix D.4). For both methods, all the latter apply so
that the main difference between GradMax and TINY in this experiment is the
mathematical definition of the new neurons.

TINY GradMax

∆t 0.25 1 0.25 1

s

1/4 67.2± 0.1 70.4± 0.2 65.1± 0.2 68.6± 0.1

1/4 70.3± 0.2 5∗ 70.9± 0.2 5∗ 67.0± 0.2 5∗ 69.0± 0.2 5∗

1/64 65.8± 0.1 68.1± 0.5 45.0± 0.4 56.8± 0.2

1/64 69.5± 0.2 5∗ 68.7± 0.6 5∗ 57.0± 0.4 10∗ 58.4± 0.2 10∗

Table 5.2: Final accuracy on test of ResNet18 after the architecture growth (grey)
and after convergence (blue). The number of stars indicates the multiple of 50
epochs needed to achieve convergence. With the starting architecture ResNet1/64
and ∆t = 0.25, the method TINY achieves 65.8± 0.1 on test after its growth and
it reaches 69.5 ± 0.2 5∗after 5∗ := 5 × 50 epochs (examples of training curves for
the extra training in Figure D.3). Mean and standard deviation are estimated on
4 runs for each setting.

For s = 1/64, that is, thin start, we observe a significant difference in perfor-
mance between TINY and GradMax methods. While TINY models almost achieve
the reference’s performance, GradMax remains stuck 10 points below. This sug-
gests that the framework proposed by GradMax is not sufficient to be able to start
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Algorithm 10: NewNeurons
Data: l : layer to add neurons, δW : best update at l + 1
Result: Best neurons at l
if method == TINY then

δW = BestUpdate(l+1)
else

δW = None
end
S,N = MatrixSN(l + 1,−2, δW = δW );
Compute the SVD of S = UΣUT ;
Compute the SVD of U

√
Σ

−1
UN = AΛΩ;

Use the columns of A, the lines of Ω and the diagonal of Λ to construct
the new neurons of Prop.Theorem 3.2.3;
if method == GradMax then

A = 0
end

Algorithm 11: Algorithm to plot Figure 5.6 and Figure 5.9.
for each method [TINY, MethodToCompareWith] do

Start from neural network N with initial structure s ∈ {1/4, 1/64};
while N architecture does not match ResNet18 width do

for d in {depths to grow} do
θK

∗
↔ = NewNeurons(d,method) ;

Normalize θK
∗

↔ according to Appendix D.4.2;
Add the neurons at layer d ;
Train N for ∆t epochs ;
Save model N and its performance ;

end
end

end

Small Reference s = 1/64 Small Reference s = 1/4 Reference

63.4± 0.3 5∗ 68.6± 0.4 5∗ 72.8± 0.3 5∗

Table 5.3: Accuracy for the references architecture trained from scratch
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Figure 5.7: Evolution of accuracy and number of parameters as a function of the
gradient step for the setting ∆t = 1, s = 1/64 for TINY and GradMax, mean and
standard deviation over four runs. Other settings in the annexes Figure D.2
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and GradMax, mean and standard deviation over four runs. Other settings in the
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Method
Indicators

Dataset
Arch. Time Acc.

GradMax∔ ∆t = 0.25, s = 1/64 ResNet-18 0.12 45.0± 0.4

CIFAR-100
∆t = 1, s = 1/64 ResNet-18 0.26 56.8± 0.2

TINY∔ ∆t = 0.25, s = 1/64 ResNet-18 0.13 65.8± 0.1

∆t = 0.1, s = 1/64 ResNet-18 0.28 68.1± 0.5

Table 5.4: Time: GPU days spent to search for the architecture and to train it.
Acc.: accuracy on test set (%). ∔ : estimated with our implementation.

with an architecture far from full expressivity, i.e. ResNet1/64, while TINY is able
to handle it. As for the setting s = 1/4, both methods seem equivalent in terms
of final performance and achieve full expressivity.

The curves on Figure 5.7, which are extracted from Figure D.2 in the ap-
pendix, show that TINY models have converged at the end of the growing process,
while GradMax ones have not. This latter effect contrasts with the GradMax
formulation, which is to accelerate the gradient descent as fast as possible by
adding neurons. Furthermore, GradMax needs extra training to achieve full ex-
pressivity: for the particular setting s = 1/64,∆t = 1, the extra training time
required by GradMax is twice as high as TINY’s, as shown in Figure 5.8. This
need for extra training also appears for all settings in Table 5.2. In particular, for
s = 1/64,∆t = 0.25, the difference in performance after and before extra training
goes up to 20 % above the initial performance while it is only of 6% for TINY.

5.3.2 Comparison with Random on CIFAR-100 : initialisation
impact

This section focuses on the impact of the new neurons’ initialization. We con-
sider as a baseline the Random method, which initializes the new neurons accord-
ing to a Gaussian distribution: (α∗

k, ω
∗
k)

K
k=1 ∼ N (0, Id) or a uniform distribution

U [−1, 1]. Also, when adding new neurons, the best scaling is searched using a
line search on the loss. Thus, the operation θK↔ ← γ∗θK↔, is performed with the
amplitude factor γ∗ ∈ R defined in Equation (4.18) and that is recalled here:

γ∗ := argmin
γ∈[−L,L]

∑
i

ℓ(fθ⊕γθK↔
(xi),yi) with γθK

∗

↔ = (
√
γα∗

k,
√
γω∗

k)
K
k=1 (5.6)

with L a positive constant, which is given in Algorithm 11. With such an amplitude
factor, one can measure the quality of the directions generated by TINY and
Random by quantifying the maximal decrease of loss in these directions.

No gradient descent step is performed in order to better measure the impact
of the initialization method and distinguish it from the optimization process. This
contrasts with the previous section where long training time after architecture
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Figure 5.9: Test accuracy as a function of the number of parameters during pure
architecture growth (no gradient steps performed, only neuron addition with a
given initialization) from ResNet1/64 to ResNet18, averaged over four independent
runs.

growth was modifying the direction of the added neurons, dampening initialization
impact with training time, especially as they were added with a small amplitude
factor (cf Appendix D.4.2).

With these two modifications to the protocol of the previous section, the Fig-
ure 5.9 can be plotted. The crucial impact of TINY initialization can be seen
compared to the Random one. Indeed, TINY reaches more than 17% accuracy
just by adding neurons (without any further update), which accounts for about
one-quarter of the total accuracy with the full method (69% in Table 5.2 using in
addition gradient descent). On the opposite, the Random initialization does not
contribute to the accuracy through the growing process (just about 1%); this can
be explained and quantified as follows.

To study the random setting, one can model v(X) and vgoal(X) as independent
variables where vgoal ∼ N

(
0d,

1
d
Id
)

and v either ∼ N
(
0d,

1
d
Id
)

or ∼ U [−1
d
, 1
d
], d

being the dimension of vgoal and v. From Equation (3.23), the scalar product
⟨V (X),Vgoal(X)⟩ := 1

n

∑
i vgoal(xi)

Tv(xi) is a proxy for the expected decrease of
loss after each architecture growth. This quantity can be approximated by its
standard deviation, ie 1√

nd
, which makes the expected relative gain of loss (for a

gradient step) of the order of magnitude of 1√
64

for the first layer and 1√
512

for the
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last layer when compared to the true gradient, and consequently when compared
to TINY. Furthermore, one can take into account the effect of a line search over
the random direction: in that case, the expected relative loss gain is quadratic in
the angle between the directions and, therefore, of the order of magnitude of 1

64
or

1
512

respectively (see Appendix Appendix C.6.3).
Note that the search interval of Equation (5.6) can be shrunk to [0, L] with

TINY initialization, as the first order development of the loss in Equation (3.23)
is positive. This property is the direct consequence of the definition of V ∗ as
the minimizer of the expressivity bottleneck (Equation (3.21)). Also, note that
GradMax was not included in Figure 5.9 because its protocol initializes the ongoing
weights to zero (αk ← 0) and imposes a small norm on its outgoing weights
(||ωk|| = ε). Those two aspects make the amplitude factor γ∗ meaningless and the
impact of the new neuron initialization invisible without gradient descent.

Conclusion

In this experiment section, we have shown that reducing the expressivity bot-
tleneck is a self-sufficient objective for constructing a neural network architecture.
The proposed method achieves better results than the random and the GradMax
optimization processes, and is able to start from a very thin architecture, contrary
to GradMax. In the module TINYpub, architecture growth optimization is already
instantiated for linear and convolutional layers; extension to self-attention mech-
anisms (transformers) is part of future works. Although common architectures
consist of a succession of layers, another research direction would be to develop
tools for handling general computational graphs (such as U-net, Inception, and
Dense-Net), which offers the possibility to let the architecture graph grow and
bypass manual design.
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6 Conclusion

In this manuscript, we have properly defined the expressivity bottleneck metric,
which quantifies the lack of expressivity of a network at a given layer. This metric is
defined as the minimal distance between what is asked by the backpropagation and
what can be done by a change of parameter. In fact, it measures the amplitude of
the directions that are needed by the current network but that are not yet expressed
by its architecture. While quantifying that lack of expressivity, the metric also
defines the best infinitesimal parameters move and the best infinitesimal neurons
to add at each layer, both in close form, to reduce this lack of expressivity. This
parameter move and extension of architecture naturally define the building blocks
of a mathematically well-defined and easily computable NAS strategy.

The mathematical expression of the new neurons’ parameters, defined by the
expressivity bottleneck metric, is comparable to the initialization of the new neu-
rons of two similar one-shot strategies: namely, the GradMax and the NORTH
methods. GradMax initializes its neurons with the objective of decreasing the loss
as fast as possible, and the NORTH method initializes its neurons randomly while
avoiding redundancy within the current architecture. In fact, TINY initialization
strategy bridges the gap between those two by initializing its new neurons with
the aim of decreasing the loss as much as possible and by avoiding redundancy of
its new neurons with the current ones.

For each new neuron defined with TINY, we have determined its first-order
impact on the loss as a closed-form expression. This first-order impact ranks
the new neurons according to their relevance when considering the expressivity
bottleneck at a single layer. However, experiments and theory indicate that this
first-order impact is no longer self-sufficient when one has to choose across the
layers and decide at which depth neurons should be added first. In that case, it
seems that estimating a non-linear impact of those new neuron additions on the
loss is actually a more promising criterion, for instance with a line search as done
in Section 4.2.1.

With a naive strategy on top of the expressivity bottleneck metric, we have
shown, theoretically and empirically, that decreasing the expressivity bottleneck
is a self-sufficient objective to achieve zero-loss on the training set, and that this
objective can easily be coupled with the usual gradient descent process. Using the
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Python module TINYpub, we have implemented a naive search strategy, and we
have shown that the method can provide competitive results on academic datasets
compared to other one-shot strategies on reference architectures.

Future works

In this manuscript, we have proposed the theory and the application of the
expressivity bottleneck for linear and convolutional layers; one could propose to
extend the theory to attention layers and to graph neural networks. With these
extensions, one could grow unusual architecture with various types of layers, hence
studying novel and perhaps more adapted network designs for standard and non-
standard tasks.

For general Directed Acyclic Graph (DAG), we can remark that adding a new
layer in the graph is equivalent to growing an empty layer, which is compatible
with the theory of Chapter 3 by considering that the output function of that empty
layer is the null function. However, with a DAG, there exists configurations for
which the best new neuron to add, as defined in Theorem 3.2.3, is none. Such
phenomenon happens as soon as two activities are connected twice through two
types of connections, forming altogether a triangle: let’s consider a DAG where
each post-activation is called a node, and each node is connected to another node
through a linear application. Then, consider the nodes a, b and c connected in a
triangle with a connected to b (a −→ b), and a connected to c, which is itself con-
nected to b (a −→ c −→ b). In that case and considering the first order approximation
setting of Chapter 3, the functional space induced by an update of parameters of
the connection between nodes a and b is equal to the functional space induced by
a neuron addition at node c, and both are equal to Span(a). It is to say that
no neuron addition can expand the tangent space of achievable function of the
current network, and therefore no neuron addition is needed (at first order). To
ensure that those two functional spans are different, one can take into account the
non-linearity of the activation function at node b and search for the best neurons to
add by reducing the expressivity bottleneck. While this problem has been shown
to be NP-hard [Bach, 2017] with the ReLU activation function, it is still possi-
ble to approximate the solution by a local minimum using standard optimization
methods. Those extensions have already been proposed in the paper Douka et al.
[2025] (accepted at the ESANN conference and of which I am a co-author), where
layers are added to a neural network by minimizing the expressivity bottleneck
with the usual gradient descent and by taking into account the non-linearity of
the activation function.

Another research direction would be to study the statistical reliability of the
TINY method, for instance, using tools borrowed from the random matrix the-
ory. Indeed, statistical tests can be applied to the intermediate computations from
which the new neurons are obtained. An interesting byproduct of this approach
would be to define a threshold to select neurons found by Theorem 3.2.3, based
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on statistical significance. This selection could be the starting point of a search
strategy at a given layer, and could be mixed with a strategy based on the ampli-
tude factor to construct a strategy across the layers. Although the TINY method
is self-sufficient in the sense that it can train and grow a neural network without
the usual update of the gradient descent, one could also search to genuinely com-
bine the usual gradient descent optimization of the parameters and the updates of
the TINY method. The idea would be to exploit the computational efficiency of
gradient descent and estimate when training should be preferred over growth.

These research directions are in progress with the implementation of a pytorch
module called GrowMo (for Growing Module), that is developed in the TAU team.
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Glossary

Bayesian neural network A Bayesian neural network has the same structure
as the standard neural network, but each of its weights is a random variable.
28, 38

brute force A brute force method is a method that checks all possibilities until
the correct one is found. 25

Gaussian process A Gaussian process is a collection of random variables indexed
by time or space such that every finite collection of those random variables
has a multivariate normal distribution. 28, 30

generalization The generalization property of a model defines its capability to
adapt and react properly to previously unseen, new data, which has been
drawn from the same distribution as the one used to build the model. 25,
30, 31, 37, 38

Hilbert space A Hilbert space is a vector space equipped with an inner product
that induces a distance function for which the space is a complete metric
space. 51

pocket algorithm The pocket algorithm is a variant of the Perceptron learning
algorithms where, at each iteration, one saves the model and its number of
misclassified examples. At the end of the training iteration, the algorithm
returns the solution that has the lowest number of misclassified examples.
30

surrogate A surrogate model is an engineering method used when an outcome of
interest cannot be easily measured or computed, so an approximate mathe-
matical model of the outcome is used instead. 28

the Solomonoff’s prior The Solomonoff’s theory of inductive inference defines
the best possible scientific model as the shortest algorithm that generates
the empirical data under consideration. 43
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Glossary

trial and error The trial and error process is a fundamental method of problem-
solving characterized by repeated, varied attempts which are continued until
success, or until the practicer stops trying. 16, 25, 44, 45
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Appendix outline and general remarks

• Appendix B details the theoretical approach of TINY.

• Appendix C proves the propositions of Chapter 3.

• Appendix D details the python module TINYpub and gives additional graph-
ics associated to the result part.

Apart from Appendix B where we need to identify scalar products between each
other, we use the trace scalar product and its associated norm as the default scalar
product, and we note ⟨ . , . ⟩ := ⟨ . , . ⟩Tr and || . || := || . ||Tr. One should remark
that || . || = || . ||Tr = || . ||2 == || . ||F where || . ||2 is the usual Euclidean norm
and = || . ||F is the Frobenius norm.
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A Résumé

Cette thèse propose une stratégie originale d’accroissement d’architecture de réseaux
de neurones en un coup, c’est-à-dire qui optimise conjointement l’architecture du
réseau et ses paramètres. Pour ce faire, cette approche utilise l’outil d’optimisation
classique qu’est la descente de gradient ainsi qu’une nouvelle métrique appelée
manque d’expressivité, qui associe à un emplacement de l’architecture du réseau
actuel son incapacité à suivre sa dérivée fonctionnelle. Cette métrique est définie
comme la projection du gradient fonctionnel du réseau sur son espace tangent
et s’estime en un temps comparable à celui d’une « passe aller-retour » dans le
réseau. Elle définit une mesure d’expressivité du réseau peu coûteuse en temps de
calcul, notamment en comparaison du temps nécessaire au calcul d’autres mesures
de complexité comme la complexité de Rademacher, la dimension VC ou encore
la complexité de Kolmogorov.

Ce manuscrit s’attache à augmenter l’architecture du réseau de sorte à min-
imiser cette nouvelle métrique. Bien que le type d’accroissement d’architecture
considéré et pris en exemple dans ce manuscrit soit l’ajout de neurones à des
couches préexistantes pour un réseau de profondeur fixée, l’ensemble des propo-
sitions présentées ici restent vraies et applicables à l’accroissement de réseaux en
graphes directs et acycliques, avec ajout de nouvelles couches.

Dans ce manuscrit, il est démontré que l’incapacité, ou manque d’expressivité,
peut être résolue au premier ordre de manière optimale par l’ajout de neurones
appropriés et que la forme de la solution optimale pour ces nouveaux neurones
dépend de la décomposition en valeurs singulières de matrices de covariances qui
sont naturellement sauvegardées lors des « passes aller-retour » dans le cadre de
l’entraînement du réseau, i.e. les matrices de post-activités et les matrices de poids
du réseau. Bien que la décomposition en valeurs singulières soit habituellement
considérée comme une opération coûteuse en machine learning, ce calcul est ici
négligeable au regard du coût des « passes aller-retour » dans le réseau, car les
matrices de covariances sur lesquelles cette décomposition est effectuée sont de
petite taille.

Ensuite, il est démontré qu’il existe une équivalence entre la réduction du
manque d’expressivité du réseau et la maximisation de la décroissance de la perte
globale à l’ordre un. En fait, l’impact de chaque nouveau neurone défini par la min-
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imisation du manque d’expressivité réduit non seulement le manque d’expressivité
mais également la perte globale, proportionnellement aux valeurs singulières des
matrices de covariances évoquées. Cette propriété permet d’établir un classe-
ment de ces nouveaux neurones au sein d’une même couche selon l’amplitude
de ces valeurs singulières, et ainsi de construire une stratégie d’ajout basée sur
la métrique du manque d’expressivité. Il est clair que la résolution du manque
d’expressivité fournit des outils et des propriétés pour développer une architec-
ture à partir d’un très petit nombre de neurones, et ce, pendant l’entraînement
classique du réseau. Avec une stratégie naïve fondée sur la métrique du manque
d’expressivité, il est montré, théoriquement et empiriquement, que la minimisa-
tion de cette métrique est un objectif autosuffisant pour atteindre une perte nulle
sur l’ensemble d’apprentissage. De plus, cet objectif peut être facilement couplé
au processus habituel de descente de gradient. En utilisant le module Python
TINYpub, nous avons mis en œuvre une stratégie de recherche naïve et montré
que la méthode peut fournir des résultats compétitifs sur des ensembles de don-
nées académiques par rapport à d’autres stratégies en un coup appliquées à des
architectures de référence.

Bien que la notion de gradient fonctionnel ne soit pas explicitement nommée
dans d’autres techniques d’accroissement d’architecture en un coup, ce manuscrit
montre que cet objet joue un rôle implicite et important dans d’autres straté-
gies récentes de recherche d’architectures neuronales en un coup. En particulier,
l’expression mathématique des paramètres des nouveaux neurones, définie par
la métrique du manque d’expressivité, est comparable à l’initialisation des nou-
veaux neurones dans deux stratégies similaires, à savoir les méthodes GradMax et
NORTH présentées dans les travaux [Evci et al., 2022, Maile et al., 2022]. Grad-
Max initialise ses neurones dans l’objectif de diminuer la perte aussi rapidement
que possible, tandis que la méthode NORTH initialise ses neurones de manière
aléatoire tout en évitant la redondance au sein de l’architecture actuelle. En fait,
la stratégie d’initialisation TINY établit un lien entre ces deux méthodes, en ini-
tialisant ses nouveaux neurones de manière à minimiser la perte tout en évitant la
redondance avec les neurones existants.
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B Theoretical approach

B.1 The functional gradient

The functional loss L is a functional that takes as input a function f ∈ F and
outputs a real score:

L : f ∈ F 7→ L(f) = E(x,y)∼D

[
ℓ(f(x),y)

]
∈ R .

The function space F can typically be chosen to be L2(Rp → Rd), which is a Hilbert
space. The directional derivative (or Gateaux derivative, or Fréchet derivative) of
functional L at function f in direction v is defined as:

DL(f)(v) = lim
ε→0

L(f + εv)− L(f)
ε

if it exists. Here v denotes any function in the Hilbert space F and stands for the
direction of change for the function f , following an infinitesimal step (of size ε),
resulting in a function f + εv.

If this directional derivative exists in all possible directions v ∈ F and moreover
is continuous in v, then the Riesz representation theorem implies that there exists
a unique direction v∗ ∈ F such that:

∀v ∈ F , DL(f)(v) = ⟨v∗, v⟩ .

This direction v∗ is named the gradient of the functional L at function f and is
denoted by ∇fL(f).

Note that while the inner product ⟨·, ·⟩ considered is usually the L2 one, it is
possible to consider other ones, such as Sobolev ones (e.g., H1). The gradient
∇fL(F ) depends on the chosen inner product and should consequently rather be
denoted by ∇L2

f L(f), for instance.
Note that continuous functions from Rp to Rd, as well as C∞ functions, are

dense in L2(Rp → Rd).
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Appendix B. Theoretical approach

Let us now study properties specific to our loss design: L(f) = E(x,y)∼D

[
ℓ(f(x),y)

]
.

Assuming sufficient ℓ-loss differentiability and integrability, it follows that, for any
function update direction v ∈ F and infinitesimal step size ε ∈ R:

L(f + εv)− L(f) = E(x,y)∼D

[
ℓ(f(x) + εv(x),y)− ℓ(f(x),y)

]
= E(x,y)∼D

[
∇uℓ(u,y)

∣∣
u=f(x)

· εv(x) +O(ε2∥v(x)∥2)
]

using the usual gradient of function ℓ at point (u = f(x),y) w.r.t. its first argu-
ment u, with the standard Euclidean dot product · in Rp. Then the directional
derivative is:

DL(f)(v) = E(x,y)∼D

[
∇uℓ(u,y)

∣∣
u=f(x)

·v(x)
]
= Ex∼D

[
Ey∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
·v(x)

]
and thus the functional gradient for the inner product ⟨v, v′⟩E := Ex∼D

[
v(x)·v′(x)

]
is the function:

∇E
f L(f) : x 7→ Ey∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
which simplifies into:

∇E
f L(f) : x 7→ ∇uℓ(u,y(x))

∣∣
u=f(x)

if there is no ambiguity in the dataset, i.e. if for each x there is a unique y(x).
Note that by considering the L2(Rp → Rd) inner product

∫
v · v′ instead, one

would respectively get:

∇L2
f L(f) : x 7→ pD(x)Ey∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
and

∇L2
f L(f) : x 7→ pD(x)∇uℓ(u,y(x))

∣∣
u=f(x)

instead, where pD(x) is the density of the dataset distribution at point x. In prac-
tice, one estimates such gradients using a mini batch of samples (x,y), obtained
by picking uniformly at random within a finite dataset, and thus the formulas for
the two inner products coincide (up to a constant factor).

B.2 Differentiation under the integral sign

Let X be an open subset of R, and Ω be a measure space. Suppose f : X×Ω −→
R satisfies the following conditions:

• f(x, ω) is a Lebesgue-integrable function of ω for each x ∈ X.
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B.3. Gradients and proximal point of view

• For almost all ω ∈ Ω , the partial derivative ∂
∂x
f of f according to x exists

for all x ∈ X.

• There is an integrable function θ : Ω −→ R such that | ∂
∂x
(x, ω)| ≤ θ(ω) for all

x ∈ X and almost every ω ∈ Ω.

Then, for all x ∈ X,

∂

∂x

∫
Ω

f(x, ω) dω =

∫
Ω

∂

∂x
f(x, ω) dω (B.1)

See proof and details :Le Gall [2006].

B.3 Gradients and proximal point of view

Gradients with respect to standard variables such as vectors are defined the
same way as functional gradients above: given a sufficiently smooth loss L̃ : θ ∈
ΘA 7→ L̃(θ) = L(fθ) ∈ R, and an inner product · in the space ΘA of parameters θ,
the gradient ∇θL̃(θ) is the unique vector τ ∈ ΘA such that:

∀δθ ∈ ΘA, τ · δθ = DθL̃(θ)(δθ)

where DθL̃(θ)(δθ) is the directional derivative of L̃ at point θ in the direction
δθ, defined as in the previous section. This gradient depends on the inner product
chosen, which can be highlighted by the following property. The opposite −∇θL̃(θ)
of the gradient is the unique solution of the problem:

argmin
δθ∈ΘA

{
DθL̃(θ)(δθ) +

1

2
∥δθ∥2P

}
where ∥ ∥P is the norm associated to the chosen inner product. Changing the
inner product changes the way candidate directions δθ are penalized, leading to
different gradients. This proximal formulation can be obtained as follows. For any
δθ, its distance to the gradient descent direction is:∥∥∥δθ − (−∇θL̃(θ)

)∥∥∥2 = ∥δθ∥2 + 2 δθ · ∇θL̃(θ) +
∥∥∥∇θL̃(θ)

∥∥∥2
= 2

(
1

2
∥δθ∥2 +DθL̃(θ)(δθ)

)
+K

where K does not depend on δθ. For the above to hold, the inner product used
has to be the one from which the norm is derived. By minimizing this expression
with respect to δθ, one obtains the desired property.
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Appendix B. Theoretical approach

In this case of study, for the norm over the space ΘA of parameter variations,
a norm in the space of associated functional variations is considered, i.e.:

∥δθ∥P :=

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥
which makes more sense from a physical point of view, as it is more intrinsic to the
task to solve and depends as little as possible on the parameterization (i.e. on the
architecture chosen). This results in a functional move that is the projection of the
functional one to the set of possible moves given the architecture. On the opposite,
the standard gradient (using Euclidean parameter norm ∥δθ∥ in parameter space)
yields a functional move obtained not only by projecting the functional gradient
but also by multiplying it by a matrix ∂fθ

∂θ
∂fθ
∂θ

T
which can be seen as a strong

architecture bias over-optimization directions.
It is supposed here, that the loss L to be minimized is the real loss that the user

wants to optimize, possibly including regularizers to avoid overfitting, and since
the architecture is evolving during training, possibly to architectures far from usual
manual design and never tested before, one cannot assume architecture bias to be
desirable. The objective is to get rid of it in order to follow the functional gradient
descent as closely as possible.

Searching for

v∗ = argmin
v∈TA

∥v − vgoal∥2 = argmin
v∈TA

{
DL(f)(v) + 1

2
∥v∥2

}
(B.2)

or equivalently for:

δθ∗ = argmin
δθ∈ΘA

∥∥∥∥∂fθ∂θ
δθ − vgoal

∥∥∥∥2 (B.3)

= argmin
δθ∈ΘA

{
DθL(fθ)(δθ) +

1

2

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥2
}

=: −∇TA
θ L(fθ) (B.4)

then appears as a natural goal.

B.4 Problem formulation and choice of pre-activities

There are several ways to design the problem of adding neurons, which is
discussed now, in order to explain TINY choice of the pre-activities to express
expressivity bottlenecks.

Suppose one wishes to add K neurons θK↔ := (αk,ωk)
K
k=1 to layer l − 1, which

impacts the activities al at the next layer, in order to improve its expressivity.
These neurons could be chosen to have only null weights, or null input weights
αk and non-null output weights ωk, or the opposite, or both non-null weights.
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B.4. Problem formulation and choice of pre-activities

Searching for the best neurons to add for each of these cases will produce different
optimization problems.

Let us remind first that adding such K neurons with weights θK↔ := (αk,ωk)
K
k=1

changes the activities al of the (next) layer by

δal =
K∑
k=1

ωk σ(α
T
k bl−2(x)) (B.5)

Small weights approximation Under the hypothesis of small input weights
αk, the activity variation B.5 can be approximated by:

σ′(0)
K∑
k=1

ωkα
T
k bl−2(x) (B.6)

at first order in ∥αk∥. The constant σ′(0) is dropped in the sequel.
This quantity is linear both in αk and ωk, therefore the first-order parameter-

induced activity variations are easy to compute:

vl(x, (αk)
K
k=1) =

∂al(x)

∂( (αk)Kk=1 ) |(αk)
K
k=1=0

(αk)
K
k=1 =

K∑
k=1

ωkbl−2(x)
Tαk

vl(x, (ωk)
K
k=1) =

∂al(x)

∂( (ωk)Kk=1 ) |(ωk)
K
k=1=0

(ωk)
K
k=1 =

K∑
k=1

ωkbl−2(x)
Tαk

so with a slight abuse of notation, it follows that :

vl(x, θK↔) =
K∑
k=1

ωkα
T
k bl−2(x)

Note also that technically the quantity above is first-order in αk and in ωk but
second-order in the joint variable θK↔ = (αk,ωk).

Adding neurons with 0 weights (both input and output weights). In
that case, one increases the number of neurons in the layer, but without changing
the function (since only null quantities are added) and also without changing the
gradient with respect to the parameters, thus not improving expressivity. Indeed,
the added quantity (Eq. B.5) involves 0× 0 multiplications, and consequently the
derivative ∂al(x)

∂θK↔

∣∣∣
θK↔=0

w.r.t. these new parameters, that is, bl−2(x)
Tαk w.r.t. ωk

and ωk bl−2(x)
T w.r.t. ak is 0, as both ak and ωk are 0.
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Adding neurons with non-0 input weights and 0 output weights or the
opposite. In these cases, the addition of neurons will not change the function
(because of multiplications by 0), but just the gradient. One of the 2 gradients
(w.r.t. ak or w.r.t ωk) will be non-0, as the variable that is 0 has non-0 derivatives.

The question is then how to pick the best non-0 variable, (ak or ωk) such that
the added gradient will be the most useful. The problem can then be formulated
similarly to what is done in the paper.

Adding neurons with small yet non-0 weights. In this case, both the func-
tion and its gradient will change when adding the neurons. Fortunately, Proposi-
tion 3.2.3 states that the best neurons to add in terms of expressivity (to get the
gradient closer to the variation desired by the backpropagation) are also the best
neurons to add to decrease the loss, i.e. the function change they will imply goes
into the right direction.

For each family (ωk)
K
k=1, the tangent space in al restricted to the family

(αk)
K
k=1, ie T al

A := { ∂al

∂(αk)
K
k=1 |(αk)

K
k=1=0

(.)(αk)
K
k=1|(αk)

K
k=1 ∈

(
R|bl−2(x)|

)K} varies with

the family (ωk)
K
k=1, ie T al

A := T al
A ((ωk)

K
k=1). Optimizing w.r.t. the ωk is equivalent

to searching for the best tangent space for the αk, while symmetrically optimizing
w.r.t. the αk is equivalent to finding the best projection on the tangent space
defined by the ωk.

Pre-activities vs. post-activities. The space of pre-activities al is a natural
space for this framework, as they are formed with linear operations, and first-order
variation quantities can be computed. Considering the space of post-activities
bl = σ(al) is also possible, though computing variations will be more complex.
Indeed, without first-order approximation, the obtained problem is not manageable
because the non-linear activation function σ added in front of all quantities (while
in the case of pre-activations, quantity B.5 is linear in ωk and thus does not require
an approximation in ωk, which allow considering large ωk), and, with first-order
approximation, it would add the derivative of the activation function, taken at
various locations σ′(al) (while in the previous case, the derivatives of the activation
function were always taken at 0).
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B.5. About equivalence of quadratic problems

Figure B.1: Changing the tangent space with different values of (ωk)
K
k=1.

B.5 About equivalence of quadratic problems

Problems 3.21 and 3.20 are generally not equivalent but might be very close,
depending on layer sizes and number of samples. The difference between the two
problems is that, in one case, one minimizes the quadratic quantity:∥∥V l(θK↔) + V l(δWl)− Vgoal

l
∥∥2

w.r.t. δWl and θK↔ jointly, while in the other case the problem is first minimized
w.r.t. δWl and then w.r.t. θK↔. The latter process, being greedy, might thus
provide a solution that is not as optimal as the joint optimization.

This two-step process is chosen as it intuitively relates to the spirit of improving
upon a standard gradient descent: the objective is to add neurons that complement
what the other ones have already done. This choice is debatable, and one could
solve the joint problem using the same techniques.

The topic of this section is to check how close the two problems are. To study
this further, note that V l(δWl) = δWl Bl−1 while V l(θK↔) =

∑K
k=1ωkB

T
l−2αk.

The rank of Bl−1 is min(nS, nl−1) where nS is the number of samples and nl−1

the number of neurons (post-activities) in layer l − 1, while the rank of Bl−2 is
min(nS, nl−2) where nl−2 is the number of neurons (post-activities) in layer l − 2.
Note also that the number of degrees of freedom in the optimization variables δWl

and θK↔ = (ωk,αk) is much larger than these ranks.

Small sample case. If the number nS of samples is lower than the number of
neurons nl−1 and nl−2 (which is potentially problematic, see Section D.4), then
it is possible to find suitable variables δWl and θK↔ to form any desired V l(δWl)
and V l(θK↔). In particular, if nS ⩽ nl−1 ⩽ nl−2, one can choose V l(θK↔) to be
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Vgoal
l−V l(δWl) and thus cancel any effect due to the greedy process in two steps.

The two problems are then equivalent.

Large sample case. On the opposite, if the number of samples is very large
(compared to the number of neurons nl−1 and nl−2), then the lines of matrices
Bl−1 and Bl−2 become asymptotically uncorrelated, under the assumption of their
independence (which is debatable, depending on the type of layers and activation
functions). Thus the optimization directions available to V l(δWl) and V l(θK↔)
become orthogonal, and proceeding greedily does not affect the result, the two
problems are asymptotically equivalent.

In the general case, matrices Bl−1 and Bl−2 are not independent, though not
fully correlated, and the number of samples (in the minibatch) is typically larger
than the number of neurons; the problems are then different.

Note that technically the ranks could be lower in the improbable case where
some neurons are perfectly redundant, or, e.g., if some samples yield exactly the
same activities.
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C proofs of 3

C.1 proof of Proposition 3.2.2

Denoting by δWl
+ the generalized (pseudo-)inverse of δWl, it follows that:

δW ∗
l =

1

n
Vgoal

lBT
l−1

(
1

n
Bl−1B

T
l−1

)+

and V l
0 =

1

n
Vgoal

lBT
l−1

(
1

n
Bl−1B

T
l−1

)+

Bl−1

Proof: Fully connected layers
Consider the function

g(δW ) :=
∥∥Vgoal

l − δWBl−1

∥∥2 (C.1)

then:

g(δW +H) = ||Vgoal
l − δWBl−1 −HBl−1||2 (C.2)

= g(δW )− 2
〈
Vgoal

l − δWBl−1,HBl−1

〉
+ o(||H||) (C.3)

= g(δW )− 2
〈(
Vgoal

l − δWBl−1

)
BT

l−1,H
〉
+ o(||H||) (C.4)

By identification ∇δW g(δW ) = −2
(
Vgoal

l − δWBl−1

)
BT

l−1, and thus

∇δW g(δW ) = 0 =⇒ Vgoal
lBT

l−1 = δWBl−1B
T
l−1.

Using that g is convex and the definition of the generalized inverse, then:

δW ∗
l =

1

n
Vgoal

lBT
l−1

(
1

n
Bl−1B

T
l−1

)+

.

Convolutional layers
For convolutional layers, the minimization problem is (the index l−1 has been

dropped for readability):
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argmin
δW

∥Vgoal −ConvδW (B)∥ (C.5)

This can be converted in a linear regression by transforming the convolution
in a matrix multiplication. Let H and W the height and width of an internal
representation of B, C the number of channels and (d, d) the size of the kernel. In
square brackets is indicated the index position of those quantity with respect to
the reference layer, which is here l− 1. Doing so, C[+1] is the number of channels
at layer l−1+1. For the figure fig. 5.1, one can remark that HW = P and S = d2.
Using those notations, the matrices δW and Vgoal are reshaped and permuted :

• δW ∈ (C[+1], C, d[+1], d[+1]) is transformed in δWF ∈ (C[+1], Cd[+1]d[+1])

• Vgoal ∈ (n,C[+1], H[+1],W [+1]) is transformed in VgoalF ∈ (nH[+1]W [+1], C[+1])

Definition C.1.1 (Bc). Let Bc ∈ (n,Cd[+1]d[+1], H[+1]W [+1]) and its reshaped
version Bc

F ∈ (nH[+1]W [+1], Cd[+1]d[+1]) satisfying Bc
F δW

T
F ∈ (nH[+1]W [+1], C[+1])

and that is a reshaped version of ConvδW (B). (Bc can be easily computed using
torch.Tensor.Unfold.)

Using such definition, eq. (C.5) becomes:

argmin
δWF

∥∥VgoalF −Bc
F δW

T
F

∥∥ (C.6)

Using the same reasoning that for fully connected layers an optimal solution is
then :

(δW ∗
F )

T =
1

n

(
(Bc

F )
TBc

F

)+ 1

n
(Bc

F )
TVgoalF (C.7)

C.2 Proof of proposition 3.2.3

We define the matrices N := 1
n
Bl−2

(
Vgoal

l
proj

)T
and S := 1

n
Bl−2B

T
l−2. Let us

denote its SVD by S = OΣOT , and note S− 1
2 := O

√
Σ

−1
OT and consider the

SVD of the matrix S− 1
2N =

∑R
k=1 λkukv

T
k with λ1 ≥ ... ≥ λR ≥ 0, where R is the

rank of the matrix N . Then:

Proposition C.2.1 (3.2.3). The solution of equation 3.21 can be written as:

• optimal number of neurons: K∗ = R

• their optimal weights: (α∗
k,ω

∗
k) = (

√
λkS

− 1
2uk,
√
λkvk) for k = 1, ..., R.
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C.2. Proof of proposition 3.2.3

Moreover for any number of neurons K ⩽ R, and associated scaled weights θK,∗
↔ ,

the expressivity gain and the first order in η of the loss improvement due to the
addition of these K neurons are equal and can be quantified very simply as a
function of the eigenvalues λk:

Ψl
θ⊕θK,∗

↔
= Ψl

θ −
K∑
k=1

λ2
k

for fully-connected layers, with an inequality instead (≤) for convolutional layers.

To facilitate reading the layer index of each quantity has been removed, i.e.
B := Bl−2,V

l(A,Ω) := V (A,Ω) and Vgoal
l
proj := Vgoalproj. Then, we have fixed

n and x1, ....,xn on which the expressivity bottleneck formula is solved.
To solve this problem, consider the input of the incoming connections B and

the desired change in the output of the outgoing connections Vgoalproj. Hence if
L(A) and L(Ω) are the additional connections of the expanded representation and
σ the non linearity, the following proxy problem is optimized:

argmin
A,Ω

1

n

∥∥∥(L(Ω) ◦ σ ◦ L(A))(B)− Vgoalproj

∥∥∥ (C.8)

This problem is solved at first order by linearizing the non linearity σ. Let
Lin(a,b)(W ) the fully connected layer with input size a, output size b and weight
matrix W . Let C[+1] and C[−1] the layer width at layer l+ 1 and l− 1 with the
convention that C[0] is the dimension of the input x. With those notations, for
fully connected layers, it follows that for the additions of K neurons :

argmin
A,Ω

1

n

∥∥∥Lin(C[+1],K)(Ω)(Lin(K,C[−1])(A)(B))− Vgoalproj

∥∥∥ (C.9)

With the same notations, for convolutional layers, it follows that for the addi-
tions of K intermediate channels:

argmin
A,Ω

1

n

∥∥∥Conv(C[+1],K)(Ω)(Conv(K,C[−1])(A)(B))− Vgoalproj

∥∥∥ (C.10)

Let V (A,Ω) the result of B after applying the layers parametrized by A and
Ω, in both cases the minimization problem is:

argmin
A,Ω

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥ (C.11)

First, for linear layers, we will show that solving C.9 is equivalent to solve :
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argmin
A,Ω

∥∥∥S 1
2AΩT − S− 1

2N
∥∥∥ (C.12)

where S depends of B and N of B and Vgoalproj.

Then, for convolutional layers, we will provide the exact solution and also, we
will upper bound the solution of C.10 as :

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ ∥∥∥S 1
2AFΩF − S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 + 1

n

∥∥∥Vgoalproj

∥∥∥2
(C.13)

where, as for linear layers, S depends of B and N of B and Vgoalproj, and, AF

and ΩF are reshaped versions of A and Ω.

C.2.1 Fully connected layers

For a fully connected layer, then :

V (A,Ω) = Lin(C[+1],K)(Ω)(Lin(K,C[−1])(A)(B)) = ΩATB (C.14)

We now use the following lemma that we shall prove in 6.

Lemma C.2.2. Let Y ∈ R(t, n),X ∈ R(s, n),C ∈ R(t, s)
We define:

S :=
1

n
XXT ∈ R(s, s) (C.15)

N :=
1

n
XY T ∈ R(s, t) (C.16)

1

n
∥CX − Y ∥2 =

∥∥∥CS
1
2 −NTS− 1

2

∥∥∥2 − ∥∥∥S− 1
2N
∥∥∥2 + 1

n
∥Y ∥2 (C.17)

Hence, using theorem C.2.2 with C ← ΩAT , Y ← Vgoalproj and B ← X,
then:

1

n

∥∥∥Lin(C[+1],K)(Ω)(Lin(K,C[−1])(A)(B))− Vgoalproj

∥∥∥2
=

1

n

∥∥∥ΩATB − Vgoalproj

∥∥∥2
=∥∥∥ΩATS

1
2 −NTS− 1

2

∥∥∥2 − ∥∥∥S− 1
2N
∥∥∥2 + 1

n

∥∥∥Vgoalproj

∥∥∥2
(C.18)
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With:

S :=
1

n
BBT ∈ R(C[−1], C[−1]) (C.19)

N :=
1

n
BVgoal

T
proj ∈ R(C[−1], C[+1]) (C.20)

Doing so we have that the following equivalence between the two optimization
problems :

argmin
A,Ω

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥ = argmin
A,Ω

∥∥∥ΩATS
1
2 −NTS− 1

2

∥∥∥ (C.21)

Before continuing the proof, we now prove the same type of equivalence for con-
volutional layers.

C.2.2 Convolutional connected layers

Let A ∈ R(K,C[−1], d, d) and Ω ∈ R(C[+1], K, d[+1], d[+1]) where d, d[+1]
is the kernel size at l and l + 1. Let AF the flatten and transposed version
of A of shape (C[−1]dd,K) and αk := AF [:, k] ∈ (C[−1]dd, 1). Let Ω with
the last order flatten i.e. Ω ∈ R(C[+1], K, d[+1]d[+1]). Let ωk,m := Ω[m, k] ∈

(d[+1]d[+1], 1). Using this, let Ω[m]F :=

ωT
1,m
...

ωT
K,m

 ∈ (K, d[+1]d[+1]) and ΩF :=

(
Ω[1]F · · · Ω[m]F

)
∈ (K,C[+1]d[+1]d[+1]).

Let T the tensor such that for a pixel j of the output of the convolutional layer,
Tj is a linear application that select the pixels of the input of the convolutional layer
that are used to compute the pixel j of the output in a flatten version image (flatten
only on the space not on the channels). T ∈ R(H[+1]W [+1], d[+1]d[+1], HW )
where H and W are the height and width of the intermediate image and H[+1]
and W [+1] are the height and width of the output image.

As previously, Bc the unfolded version of B is such that Bc ∈ R(n,C[−1]dd,HW )
satisfies Conv(Bi) is equal, with the correct reshape, to ABc

i .
In addition, let j an index on the space of pixel instead of having a couple h,w

for height and width. With those notations, it follows that :

V (A,Ω)[i,m, j] = Conv(C[+1],K)(Ω)(Conv(K,C[−1])(A)(Bi))[m, j] (C.22)

=
K∑
k

ωT
m,kTj(B

c
i )

Tαk (C.23)

In the following for simplicity, let Bt
i,j := Tj(B

c
i )

T . To find the best neurons
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to add, let consider the expressivity bottleneck as :

argmin
A,Ω

1

n

∑
i

∑
j

∑
m

∥∥∥∥∥Vgoalproj
(j,m)

i
−

K∑
k=1

ωT
m,kB

t
i,jαk

∥∥∥∥∥
2

(C.24)

(C.25)

Using the properties of the trace, it follows that :

∑
i,j,m

∥∥∥∥∥Vgoalproj
(j,m)

i
−

K∑
k=1

ωT
m,kB

t
i,jαk

∥∥∥∥∥
2

=
∑
i,j,m

∥∥∥∥∥Vgoalproj
(j,m)

i
−
∑
k

tr
(
Bt

i,jαkω
T
m,k

)∥∥∥∥∥
2

(C.26)

=
∑
i,j,m

∥∥∥∥∥∥∥Vgoalproj
(j,m)

i
− tr

Bt
i,j

Fm︷ ︸︸ ︷∑
k

αkω
T
m,k


∥∥∥∥∥∥∥
2

(C.27)

=
∑
i,j,m

∥∥∥Vgoalproj
(j,m)

i
− flat(Bt

i,j)
Tflat(Fm)

∥∥∥2
(C.28)

=
∑
i,j

∥∥∥Vgoalproj
(j)

i
− flat(Bt

i,j)
TF
∥∥∥2

(C.29)
(C.30)

With F :=
(
flat(F1) ... f lat(FC[+1])

)
.

It follows that V (A,Ω) is a linear function of the matrix F which implies
that the solution of C.24 is the same as for linear layer. Replacing ΩA by F in
C.14 and following the same reasoning as for linear layer, it follows that C.24 is
equivalent to :

argmin
F

∥∥∥S 1
2F − S− 1

2N
∥∥∥ (C.31)

with S :=
∑

i,j flat(B
t
i,j)flat(B

t
i,j)

T and N :=
∑

i,j Vgoalproj
jflat(Bt

i,j)
T .

However, the dimension of S ∈ R(C[−1]d[+1]2d2, C[−1]d[+1]2d2) is quite large
and that computing the SVD of such matrix is costly. To avoid expensive com-
putation, C.24 is approximated by defining the matrix S and N as C.32 and
C.34. It is now proved that 3.2.3, 3.2.5 and eq. (3.23) still hold with such new
definitions of S and N .
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Lemma C.2.3. Let r := min(Bt
1,1.shape), we define:

S :=
r

n

n∑
i=1

H[+1]W [+1]∑
j=1

(Bt
i,j)

T (Bt
i,j) ∈ (C[−1]dd, C[−1]dd) (C.32)

Nm :=
1

n

n,H[+1]W [+1]∑
i,j

Vgoalproji,j,m
(Bt

i,j)
T ∈ (C[−1]dd, d[+1]d[+1]) (C.33)

N :=
(
N1 · · ·NC[+1]

)
∈ (C[−1]dd, C[+1]d[+1]d[+1]) (C.34)

We have:
1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ ∥∥∥S 1
2AFΩF − S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 + 1

n

∥∥∥Vgoalproj

∥∥∥2
(C.35)

The proof in 8. We now continue the general proof of the main theorem for
convolutional and linear layers using the following lemma :

Lemma C.2.4. For S ∈ R(s, s),N ∈ R(s, t),A ∈ R(s,K),Ω ∈ R(K, t).
Let UΛV the singular value decomposition of S− 1

2N and UK the first K
columns of U , VK the first K lines of V , ΛK the first K singular values of Λ
and ΛK+1: the other singular values of Λ.

Let :

A∗ := S− 1
2UK

√
ΛK (C.36)

Ω∗ :=
√
ΛKVK (C.37)

min
A,Ω

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ 1

n

∥∥∥V (A∗,Ω∗)− Vgoalproj

∥∥∥2 = −∥ΛK∥2+
1

n

∥∥∥Vgoalproj

∥∥∥2
(C.38)

with equality for the linear case.

Ψl
θ⊕θK↔

∗ ≤ Ψl
θ −

K∑
k=1

λ2
k (C.39)

Proof: Using theorem C.2.2 and theorem C.2.3:

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ ∥∥∥S 1
2AΩ− S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 + 1

n

Ψl
θ︷ ︸︸ ︷∥∥∥Vgoalproj

∥∥∥2
(C.40)

Hence, the second term of the right term is minimized :
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argmin
A,Ω

∥∥∥S 1
2AΩ− S− 1

2N
∥∥∥ (C.41)

It is assumed that S is invertible, let consider the change of variable Ã = S
1
2A,

it follows that :

min
A,Ω

∥∥∥S 1
2AΩ− S− 1

2N
∥∥∥ = min

Ã,Ω

∥∥∥ÃΩ− S− 1
2N
∥∥∥ (C.42)

The solution of such problems is given by the paper Eckart and Young [1936]
and is:

Ã∗ = UK

√
ΛK (C.43)

Ω∗ =
√
ΛKVK (C.44)

To recover A∗ one has to multiply by S− 1
2 on the left side of Ã∗. By definition

of the SVD and the construction of (A∗,Ω∗), it follows that :∥∥∥S 1
2A∗Ω∗ − S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 = ∥ΛK+1:∥2 − ∥Λ∥2 = −∥ΛK∥2 (C.45)

Using this and eq. (C.40) the desired equation eq. (C.38) is straightforward. To
conclude, the bottleneck expression can be re-written as follows :

Ψθ⊕θK↔
:= min

A,Ω

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ Ψl
θ −

K∑
k=1

λ2
k (C.46)

C.3 Proof of 3.2.4

For γ > 0, solving (3.21) using Vgoalproj = Vgoal − V (γδW ∗) is equivalent to
minimizing the loss L at order one in γV l. Furthermore, performing an architec-
ture update with γδW ∗ (3.17) and a neuron addition with γθK,∗

↔ (3.2.3) has an
impact on the loss at first order in γ as :

L(fθ⊕γθK,∗
↔

) :=
1

n

n∑
i=1

ℓ(fθ⊕γθK,∗
↔

(xi),yi)

= L(fθ)− γ
(
σ′
l−1(0)∆θK,∗

↔
+∆δW ∗

)
+ o(γ) (C.47)

with

∆θK,∗
↔

:=
1

n

〈
V l

goalproj, V
l(θK,∗

↔ )
〉

=
K∑
k=1

λ2
k (C.48)

∆δW ∗ :=
1

n

〈
V l

goal, V
l(δW ∗)

〉
⩾ 0 . (C.49)
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To prove such proposition the following lemma is used :

Lemma C.3.1. We note V (A,Ω) the result of B after applying the layers pa-
rameterized by A and Ω. We note V (A∗,Ω∗) where A∗ and B∗ as define in 3.2.3

1

n

〈
Vgoalproj,V (A∗,Ω∗)

〉
= ∥ΛK∥2 (C.50)

Proof: Starting from theorem C.2.4

1

n

∥∥∥V (A∗,Ω∗)− Vgoalproj

∥∥∥2 = −∥ΛK∥2 +
1

n

∥∥∥Vgoalproj

∥∥∥2 (C.51)

Hence by developing the norm, we have:

1

n
∥V (A∗,Ω∗)∥2 − 2

n

〈
V (A∗,Ω∗),Vgoalproj

〉
= −∥ΛK∥2 (C.52)

Moreover by construction we have 1
n
∥V (A∗,Ω∗)∥2 = ∥ΛK∥2 and therefore we

get:

− 2

n

〈
V (A∗,Ω∗),Vgoalproj

〉
= −2 ∥ΛK∥2 (C.53)

which conclude the proof.

The main proposition is now proved. Suppose that each quantity is added to
the architecture with an amplitude factor γ i.e. the best update is then γ δW ∗

and the new neurons are {√γα∗
i ,
√
γω∗

i }i.
Using the Fréchet derivative on γ,it follows that:

L(al + γ δal) = L(al) +
〈
∇alL, γ δal

〉
+ o(γ) (C.54)

On one hand, performing an update of architecture, ie W ∗ ←− W + γ δW ∗,
changes the activation function al by γ δal

u := V (γ δW ∗). Then, as explained
in Appendix B.4, adding neurons (A∗,Ω∗) at layer l − 1 changes the activation
function al by :

γ δal
a = σ′

l−1(0) γ V (A∗,Ω∗) + o(γ) . (C.55)

It is supposed that δal
u ̸= −δal

a and perform a first order development in γ. Then
combining Equations (C.54) and (C.55), it follows that :

L(A∗,Ω∗) = L+
〈
∇alL, γ

(
δal

u + δal
a

)〉
+ o(γ) . (C.56)

Using that vgoal(xi) := −∇al(xi)ℓ(xi) and that L = 1
n

∑
i ℓ(xi),
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it follows that :

L(A∗,Ω∗) = L − 1

n

〈
Vgoal, γ

(
δal

u + δal
a

)〉
+ o(γ) (C.57)

= L − γ

n

( 〈
Vgoal, δa

l
u

〉
+
〈
Vgoal − V (γδW ∗), δal

a

〉
+ γ

〈
δal

u, δa
l
a

〉 )
+ o(γ) .

(C.58)

Using C.3.1, it follows that :

L(A∗,Ω∗) = L − γ

(
σ′
l−1(0)

K∑
k=1

λ2
k +

1

n

〈
Vgoal, δa

l
u

〉)
+ o(γ) . (C.59)

Note on the approximation for convolutional layer. By developing the ex-
pression ||V − Vgoalproj||

2, one can remark that minimizing ||V − Vgoalproj||
2 over

V is equivalent to maximizing ⟨V ,Vgoalproj⟩ with a constraint on the norm of V .
This constraint lies in the functional space of the activities and can be reformu-
lated in the parameter space with the matrix S as ||AΩT ||S = ||V ||. By changing
the matrix S for another positive semi-definite matrix Spseudo, the metric on V is
modified and a pseudo-solution S−1

pseudoN is obtained.

C.4 Theorem 3.2.5 and Section 3.2.3

(Theorem 3.2.5) Suppose S is semi definite, let S = S
1
2S

1
2 . Solving Equa-

tion (3.21) is equivalent to find the K first eigenvectors αk associated to the K
largest eigenvalues λ of the generalized eigenvalue problem :

NNTαk = λSαk (C.60)

(Section 3.2.3) For all integers m,m′ such that m + m′ ⩽ R, at order one in
η, adding m + m′ neurons simultaneously according to the previous method is
equivalent to adding m neurons then m′ neurons by applying successively the
previous method twice while imposing an orthogonality constraint between the
already m added neurons and the next m′ neurons to add.

Proof
To prove Theorem 3.2.5, it is sufficient to prove that the solution of the gener-

alized eigenvalue problem as stated in Equation (C.60) is collinear to the formula
of Theorem 3.2.3.
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Solving C.60 is equivalent to maximizing the following generalized Rayleigh
quotient (which is solvable by the LOBPCG technique):

α∗ = argmax
α

αTNNTα

αTSα
(C.61)

p∗ = argmax
p=S1/2α

pTS− 1
2NNTS− 1

2p

pTp
(C.62)

p∗ = argmax
||p||=1

||NTS− 1
2p|| (C.63)

α∗ = S− 1
2p∗ (C.64)

Considering the SVD of NTS− 1
2 =

∑R
r=1 λrerf

T
r , then S− 1

2NNTS− 1
2 =

∑R
r=1 λ

2
rfrf

T
r ,

because i ̸= j =⇒ eT
i ej = 0 and fT

i fj = 0. Hence maximizing the first quantity
is equivalent to p∗

k = fk, then αk = S− 1
2fk, which match the formula of proposi-

tion 3.2.3. The same reasoning can be applied on ωk.

The second corollary of Section 3.2.3 is proved by induction. Note that v(θK,∗
↔ ,x) =

o(η) because vgoal = o(η), then for m = m′ = 1 :

al(x)
t+1 = al(x)

t + v(θ1,∗↔ ,x) + o(η) (C.65)

Remark that vgoal(x) is a function of al(x), ie vgoal(x) := g(al(x)). Then sup-
pose that L(f(x),y)) is twice differentiable in al(x). It follows that g(al(x)) is
differentiable and :

vgoal
t+1(x) = g(at

l(x) + v(θ1,∗↔ ,x)) (C.66)
= g(at

l(x)) +∇at
l(x)

g(at
l(x))

Tv(θ1,∗↔ ,x) + o(η2) (C.67)

= vgoal
t(x) + η

∂2L(fθ(x),y)
∂al(x)2

v(θ1,∗↔ ,x) + o(η2) (C.68)

= vgoal
t(x) + o(η) (C.69)

Adding the second neuron, the following minimization problem is obtained:

argmin
α2,ω2

||Vgoal
t − V (α2,ω2)|| (C.70)
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C.5 Lemmas

Proofs of the lemmas :

Proposition C.5.1. ∀D ∈ Rp,q,B ∈ Rk,q,

∃c ∈ R s.t, argmin
H

∥D −HB∥2 = argmax
H, ∥HB∥2≤c

⟨D,HB⟩

Proof: Indeed,

argmin
H

∥D −HB∥2 = argmin
H

∥HB∥2 − 2⟨D,HB⟩ (C.71)

= argmin
H

∥HB∥2 − 2 ∥HB∥
〈
a,

HB

∥HB∥

〉
(C.72)

= argmin
hU , ∥HB∥=h, U= HB

∥HB∥

h2 − 2h⟨D,U⟩ (C.73)

(C.74)

Let U ∗ := argmaxU= HB
∥HB∥

⟨D,U⟩ which depends on B and D but does not de-
pends on h. Then :

argmin
H

∥D −HB∥2 = argmin
hU∗, h ≥ 0

h2 − 2h ⟨D,U ∗⟩ (C.75)

= h∗U ∗ (C.76)

With the convention that 0
∥0∥ = 0.

Lemma C.5.2. For S ∈ R(s, s),N ∈ R(s, t),C ∈ R(t, s).
If N = S

1
2S− 1

2N , then :

〈
CT ,SCT

〉
− 2

〈
N ,CT

〉
=
∥∥∥S 1

2CT − S− 1
2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 (C.77)

Proof: • For the first term ::〈
CT ,SCT

〉
=
〈
CT ,S

1
2S

1
2CT

〉
(C.78)

=
〈
S

1
2CT ,S

1
2CT

〉
(C.79)

=
∥∥∥S 1

2CT
∥∥∥2 (C.80)
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• For the second term : 〈
N ,CT

〉
=
〈
S

1
2S− 1

2N ,CT
〉

(C.81)

=
〈
S− 1

2N ,S
1
2CT

〉
(C.82)

Hence it follows that :〈
CT ,SCT

〉
− 2

〈
N ,CT

〉
=
∥∥∥S 1

2CT
∥∥∥2 − 2

〈
S− 1

2N ,S
1
2CT

〉
+
∥∥∥S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2

(C.83)

=
∥∥∥S 1

2CT − S− 1
2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 (C.84)

Lemma C.5.3. Let Y ∈ R(t, n),X ∈ R(s, n),C ∈ R(t, s)
We define:

S :=
1

n
XXT ∈ R(s, s) (C.85)

N :=
1

n
XY T ∈ R(s, t) (C.86)

1

n
∥CX − Y ∥2 =

∥∥∥CS
1
2 −NTS− 1

2

∥∥∥2 − ∥∥∥S− 1
2N
∥∥∥2 + 1

n
∥Y ∥2 (C.87)

Proof: By developing the scalar product, it follows that:

1

n
∥CX − Y ∥2 = 1

n
∥Y ∥2 − 2

〈
Y ,

1

n
CX

〉
+

1

n
∥CX∥2 (C.88)

=
1

n
∥Y ∥2 − 2

〈
Y ,

1

n
CX

〉
+

1

n
⟨CX,CX⟩ (C.89)

=
1

n
∥Y ∥2 − 2

〈
Y T ,

1

n
(CX)T

〉
+

1

n

〈
(CX)T , (CX)T

〉
(C.90)

=
1

n
∥Y ∥2 − 2

〈
1

n
XY T ,CT

〉
+

〈
CT ,

1

n
XXTCT

〉
(C.91)

The two following lemma are used :

Lemma C.5.4. Let Y ∈ R(t, n),X ∈ R(s, n) and S := XXT ∈ R(s, s).

S
1
2S− 1

2XY T = XY T (C.92)
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Proof: Let decompose Y on Im(XT )⊕⊥ ker(X): Y = XT I +K.

XY T = XXT I +XK = XXT I = SI

Hence XY T ∈ Im(S), hence as S| Im(S) is invertible, it follows that: S− 1
2S

1
2XY T =

XY T .

Continuing the demonstration from eq. (C.91), by applying theorem C.5.2, it
follows that:

1

n
∥CX − Y ∥2 = 1

n
∥Y ∥2 − 2

〈
N ,CT

〉
+
〈
CT ,SCT

〉
(C.93)

=
1

n
∥Y ∥2 +

∥∥∥S 1
2CT − S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 (C.94)

=
1

n
∥Y ∥2 +

∥∥∥CS
1
2 −NTS− 1

2

∥∥∥2 − ∥∥∥S− 1
2N
∥∥∥2 (C.95)

Lemma C.5.5. Let r := min(Bt
1,1.shape), we define:

S :=
r

n

n∑
i=1

H[+1]W [+1]∑
j=1

(Bt
i,j)

T (Bt
i,j) ∈ (C[−1]dd, C[−1]dd) (C.96)

Nm :=
1

n

n,H[+1]W [+1]∑
i,j

Vgoalproji,j,m
(Bt

i,j)
T ∈ (C[−1]dd, d[+1]d[+1]) (C.97)

N :=
(
N1 · · ·NC[+1]

)
∈ (C[−1]dd, C[+1]d[+1]d[+1]) (C.98)

We have:

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ ∥∥∥S 1
2AFΩF − S− 1

2N
∥∥∥2 − ∥∥∥S− 1

2N
∥∥∥2 + 1

n

∥∥∥Vgoalproj

∥∥∥2
(C.99)

Proof: It follows that :

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 = 1

n
∥V (A,Ω)∥2− 2

n

〈
V (A,Ω),Vgoalproj

〉2
+
1

n

∥∥∥−Vgoalproj

∥∥∥2
(C.100)

The first two terms are now simplified separately.

Norm simplification

Lemma C.5.6. For any square matrix A ∈ R(n,n),tr(A)2 ≤ rank(A) ∥A∥2.
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Proof: Using the truncated SVD we have A = UΣV with Σ a diagonal and
U ∈ R(n,rank(A)),V ∈ R(rank(A),n) truncated orthonormal matrices.

We have:

tr(A)2 = tr(UΣV )2 (C.101)
= tr(V UΣ)2 (C.102)

= ⟨V U ,Σ⟩2 (C.103)

(Cauchy-Swarz) ≤ ∥V U∥2 ∥Σ∥2 (C.104)

As U ,V are truncated orthonormal matrices, we have:

∥V U∥2 = tr(UTV TV U) = tr(UTU) = tr(Irank(A)) = rank(A)

Hence:

tr(A)2 ≤ rank(A) ∥Σ∥2 (C.105)

As U ,V are truncated orthonormal matrices, we have:

∥Σ∥2 = tr(ΣTΣ) = tr((V ΣU)UΣV ) = tr(ATA) = ∥A∥2

We conclude that:

tr(A)2 ≤ rank(A) ∥A∥2 (C.106)

Lemma C.5.7. For δWl ∈ (m,n), (uk)k∈[[K]] ∈ (m)K , (vk)k∈[[K]] ∈ (n)K and with
W :=

∑
k∈JKK vku

T
k ∈ (n,m), it follows that:∥∥∥∥∥∥

∑
k∈JKK

uT
k δWlvk

∥∥∥∥∥∥
2

= tr (δWlW )2 (C.107)

Proof: Let i ∈ I: ∥∥∥∥∥∥
∑
k∈JKK

vuT
k δWlvk

∥∥∥∥∥∥
2

=

∑
k∈JKK

uT
k δWlvk

2

(C.108)

= tr

∑
k∈JKK

uT
k δWlvk

2

(C.109)

= tr

δWl

∑
k∈JKK

vku
T
k

2

(C.110)

= tr (δWlW )2 (C.111)
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Lemma C.5.8. For (δWli)i∈I ∈ (m,n)I such that ∀i ∈ I, rank(δWliW ) ≤ H and
with W ∈ (n,m), it follows that:

∑
i∈I

tr (δWliW )2 ≤

〈
W , H

∑
i∈I

δWl
T
i δWliW

〉
(C.112)

Proof: Let i ∈ I:
Using theorem C.5.6 with A← δWliW

tr (δWliW )2 ≤ rank(δWliW )||δWliW ||2 (C.113)

≤ H ∥δWliW ∥2 H := min(δWli.shape) (C.114)

Hence, it follows that:

∑
i∈I

∥∥∥∥∥∥
∑
k∈JKK

uT
k δWlivk

∥∥∥∥∥∥
2

≤ H
∑
i∈I

||δWliW ||2 (C.115)

= H
∑
i∈I

⟨δWliW , δWliW ⟩ (C.116)

= H
∑
i∈I

〈
W , δWl

T
i δWliW

〉
(C.117)

= H

〈
W ,

∑
i∈I

δWl
T
i δWliW

〉
(C.118)

Using first theorem C.5.7 with uk ← ωk,m, vk ← αk and δWl ← Bt
i,j, then:

1

n
∥V (A,Ω)∥2 = 1

n

C[+1]∑
m

n,H[+1]W [+1]∑
i,j

∥∥∥∥∥
K∑
k

ωT
k,m(B

t
i,j)αk

∥∥∥∥∥
2

(C.119)

=
1

n

C[+1]∑
m

n,H[+1]W [+1]∑
i,j

tr

(
Bt

i,j

K∑
k

αkω
T
k,m

)2

(C.120)

=
1

n

C[+1]∑
m

n,H[+1]W [+1]∑
i,j

tr
(
Bt

i,jAFΩ[m]F
)2 (C.121)
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Using theorem C.5.8 with i← (i, j), δWli ← Bt
i,j and W ← AFΩ[m]F :

≤
C[+1]∑
m

〈
AFΩ[m]F ,

r

n

n,H[+1]W [+1]∑
i,j

(Bt
i,j)

T (Bt
i,j)AFΩ[m]F

〉
(C.122)

=

C[+1]∑
m

⟨AFΩ[m]F ,SAFΩ[m]F ⟩ (C.123)

= ⟨AFΩF ,SAFΩF ⟩ (C.124)

Scalar product simplification

Lemma C.5.9. For δWl ∈ (m,n),u ∈ (m),v ∈ (n), it follows that :

uT δWlv =
〈
vuT , δWl

T
〉

(C.125)

Proof:

uT δWlv = (uT δWlv)
T (C.126)

= vT δWl
Tu (C.127)

=
〈
v, δWl

Tu
〉

(C.128)
=
〈
vuT , δWl

T
〉

(C.129)

Then:

1

n

〈
V (A,Ω),Vgoalproj

〉2
=

1

n

C[+1]∑
m

n,H[+1]W [+1]∑
i,j

K∑
k

ωT
k,mB

t
i,jαkVgoalproji,j,m

(C.130)

(Vgoalproji,j,m
∈ (1)) =

C[+1]∑
m

K∑
k

ωT
k,m

1

n

n,H[+1]W [+1]∑
i,j

(Bt
i,jVgoalproji,j,m

)αk

(C.131)
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Using theorem C.5.9 with δWl ←
∑n,H[+1]W [+1]

i,j Vgoalproji,j,m
(Bt

i,j)
T

=

C[+1]∑
m

〈
K∑
k

αkω
T
k,m,

1

n

n,H[+1]W [+1]∑
i,j

Vgoalproji,j,m
(Bt

i,j)
T

〉
(C.132)

=

C[+1]∑
m

⟨AFΩ[m]F ,Nm⟩ (C.133)

= ⟨AFΩF ,N⟩ (C.134)

Conclusion In total :

1

n

∥∥∥V (A,Ω)− Vgoalproj

∥∥∥2 ≤ ⟨AFΩF ,SAFΩF ⟩ − 2 ⟨AFΩF ,N⟩+
1

n

∥∥∥Vgoalproj

∥∥∥2
(C.135)

If it is supposed that S is invertible, one can apply theorem C.5.2 and get the
result.

Lemma C.5.10. For fθ a linear feed-forward network with parameter θ, when
adding new neurons at layer l− 1 with input weights A = 0 and output weights Ω
with A ∈ R(|bl−2(x)|, K) and Ω ∈ R(|al(x)|, K), it follows that :

∇Aℓ(x) = −bl−2(x)vgoal(x)
TΩ (C.136)

Proof: for a input x, it follows that :

ℓ(x) := ℓ(fθ⊕(A,Ω)(x)) (C.137)
= ℓ(σL(...(al(x) +Ωσl−1(A

Tbl−2(x))) (C.138)

For readability let b := bl−2(x) and vgoal
l(x) := vgoal. It follows that for any

H ∈ R(|b|, K) :

ℓ(x,H) := ℓ(fθ⊕(A+H,Ω)(x)) (C.139)
= ℓ(σL(...(al(x) +Ωσl−1(A

Tb+HTb))) (C.140)
= ℓ(σL(...(al(x) +Ωσl−1(A

Tb) + σ′
l−1(A

Tb)ΩHTb))) (C.141)
(C.142)

As A = 0, then σ′
l−1(A

Tx) = σ′
l−1(0), and it is supposed that it is equal to 1

without loss of generality.

ℓ(x,H) = ℓ(σL(...(al(x) +Ωσl−1(A
Tb) +ΩHTb+ o(∥H∥))) (C.143)

= ℓ(x, 0)−
〈
−vgoal,ΩHTb

〉
+ o(∥H∥) (C.144)
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Furthermore : 〈
vgoal,ΩHTb

〉
= vgoal

TΩHTb (C.145)
= Tr(vgoal

TΩHTb) (C.146)
= Tr(HTbvgoal

TΩ) (C.147)
=
〈
H , bvgoal

TΩ
〉
Tr

(C.148)

It follows that ∇Aℓ(x) = bvgoal
TΩ.

Lemma C.5.11. Consider the update of gradient descent VgoalB
T and the best

update VgoalB
T
(
BBT

)+, then :

VgoalB
T = 0 ⇐⇒ VgoalB

T
(
BBT

)+
= 0 (C.149)

Proof: The first implication VgoalB
T = 0 =⇒ VgoalB

T
(
BBT

)+
= 0 is straight-

forward.
Suppose VgoalB

T
(
BBT

)+
= 0. It implies that VgoalB

T
(
BBT

)+
B = 0. Let

B = UΣV T the SVD of B. It follows that :(
BBT

)+
B = UΣ−2UTUΣV T (C.150)

= UΣ−1V T (C.151)

With the convention that 0−1 = 0−20. It follows that :

VgoalB
T
(
BBT

)+
B = VgoalV ΣUTUΣ−1V T (C.152)

= VgoalV IΣV
T (C.153)

= 0 (C.154)

With IΣ the identity matrix with a one at position k, k only if Σk,k is non-zero.
On the same reasoning, let IΣ̄ the identity matrix with a one at position k, k only
if Σk,k is zero. It follows that :

VgoalB
T = VgoalV ΣUT (C.155)

VgoalB
T = Vgoal(V IΣV

T + V IΣ̄V
T )V ΣUT (C.156)

=

=0︷ ︸︸ ︷
VgoalV IΣV

T V ΣUT + VgoalV

=0︷ ︸︸ ︷
IΣ̄V

TV ΣUT (C.157)
= 0 (C.158)
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C.6 Section About greedy growth sufficiency and TINY con-
vergence with more details and proofs

One might wonder whether a greedy approach on layer growth might get stuck
in a non-optimal state. Greedy means that every neuron added has to decrease
the loss. The following series of propositions are proposed in this regard. Since
in this work, neurons are added layer per layer independently, here the case of a
single hidden layer network is studied, to spot potential layer growth issues. For
the sake of simplicity, let consider the task of least square regression towards an
explicit continuous target f ∗, defined on a compact set. That is, the objective is
to minimize the loss:

inf
∑
x∈D

∥f(x)− f ∗(x)∥2 (C.159)

where f(x) is the output of the neural network and D is the training set.
The section starts with an optional introductory section C.6.1 about greedy

growth possibilities, then prepare lemmas in Sections C.6.2 and C.6.3 that will be
used in Section C.6.4 to show that one can keep on adding neurons to a network
(without modifying already existing weights) to make it converge exponentially
fast towards the optimal function. Then in Section C.6.6 it is presented a growth
method that explicitly overfits each dataset sample one by one, thus requiring only
n neurons, thanks to existing weights modification. Finally, more importantly, in
Section C.6.7, it is shown that actually any reasonable growth method that follows
a certain optimization protocol (this includes TINY completed by random neuron
additions if necessary) will reach 0 training error in at most n neuron additions.

C.6.1 Possibility of greedy growth

Proposition C.6.1 (Greedy completion of an existing network). If f is not
f ∗ yet, there exists a set of neurons to add to the hidden layer such that the new
function f ′ will have a lower loss than f .

One can even choose the added neurons such that the loss is arbitrarily well min-
imized.

Proof: The classic universal approximation theorem about neural networks with
one hidden layer Pinkus [1999] states that for any continuous function g∗ defined
on a compact set ω, for any desired precision γ, and for any activation function
σ provided it is not a polynomial, then there exists a neural network g with one
hidden layer (possibly quite large when γ is small) and with this activation function
σ, such that

∀x, ∥g(x)− g∗(x)∥ ⩽ γ (C.160)

This theorem is applied to the case where g∗ = f ∗ − f , which is continuous as
f ∗ is continuous, and f is a shallow neural network and as such is a composition of

146



C.6. Section About greedy growth sufficiency and TINY convergence with more
details and proofs

linear functions and of the function σ, that is supposed to be continuous for the sake
of simplicity. It is supposed that f is real-valued for the sake of simplicity as well,
but the result is trivially extendable to vector-valued functions (just concatenate
the networks obtained for each output independently). Let γ = 1

10
∥f ∗ − f∥L2 ,

where ⟨a|b⟩L2 = 1
|ω|

∫
x∈ω a(x) b(x) dx. This way a one-hidden-layer neural network

is obtained g with activation function σ, and let a(x) = g(x) − g∗(x) the error
term, it follows that:

∀x ∈ ω, −γ ⩽ g(x)− g∗(x) ⩽ γ (C.161)

∀x ∈ ω, g(x) = f ∗(x)− f(x) + a(x) (C.162)

with ∀x ∈ ω, |a(x)| ⩽ γ.
Then:

∀x ∈ ω, f ∗(x)− (f(x) + g(x)) = −a(x) (C.163)

∀x ∈ ω, (f ∗(x)− h(x))2 = a2(x) (C.164)

with h being the function corresponding to a neural network consisting of con-
catenating the hidden layer neurons of f and g, and consequently summing their
outputs.

∥f ∗ − h∥2L2 = ∥a∥2L2 (C.165)

∥f ∗ − h∥2L2 ⩽ γ2 =
1

100
∥f ∗ − f∥2L2 (C.166)

and consequently the loss is reduced indeed (by a factor of 100 in this construction).
The same holds in expectation or sum over a training set, by choosing γ =

1
10

√
1
|D|
∑

x∈D ∥f(x)− f ∗(x)∥2, as Equation (C.164) then yields:

∑
x∈D

(f ∗(x)− h(x))2 =
∑
x∈D

a2(x) ⩽
1

100

∑
x∈D

(f ∗(x)− f(x))2 (C.167)

which proves the proposition as stated.
For more general losses, one can consider order-1 (linear) development of the

loss and ask for a network g that is close to (the opposite of) the gradient of the
loss.

Proof: (Proof of the additional remark) The proof in Pinkus [1999] relies on the
existence of real values cn such that the n-th order derivatives σ(n)(cn) are not 0.
Then, by considering appropriate values arbitrarily close to cn, one can approxi-
mate the n-th derivative of σ at cn and consequently the polynomial cn of order
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n. This standard proof then concludes by density of polynomials in continuous
functions.

Provided the activation function σ is not a polynomial, these values cn can
actually be chosen arbitrarily, in particular arbitrarily close to 0. This corresponds
to choosing neuron input weights arbitrarily close to 0.

Proposition C.6.2 (Greedy completion by one single neuron). If f is not
f ∗ yet, there exists a neuron to add to the hidden layer such that the new function
f ′ will have a lower loss than f .

Proof: From the previous proposition, there exists a finite set of neurons to add
such that the loss will be decreased. In this particular setting of L2 regression, or
for more general losses if considering small function moves, this means that the
function represented by this set of neurons has a strictly negative component over
the gradient g of the loss (g = −2(f ∗ − f) in the case of the L2 regression). That
is, denoting by aiσ(Wi · x) these N neurons:〈

N∑
i=1

aiσ(wi · x)
∣∣ g〉

L2

= K < 0 (C.168)

i.e.
N∑
i=1

⟨aiσ(wi · x)| g⟩L2 = K < 0 (C.169)

It follows that:

0 >
1

N
K =

1

N

N∑
i=1

⟨aiσ(wi · x)| g⟩L2 ≥
N

min
i=1
⟨aiσ(wi · x)| g⟩L2 (C.170)

Then necessarily at least one of the N neurons satisfies

⟨aiσ(wi · x)| g⟩L2 ⩽
1

N
K < 0 (C.171)

and thus decreases the loss when added to the hidden layer of the neural network
representing f . Moreover this decrease is at least 1

N
of the loss decrease resulting

from the addition of all neurons.

As a consequence, there exists no situation where one would need to add many
neurons simultaneously to decrease the loss: it is always feasible with a single
neuron. Note that finding the optimal neuron to add is actually NP-hard [Bach,
2017], so the optimal one will not necessarily be searched for . A constructive lower
bound on how much the loss can be improved will be given later in this section.
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Proposition C.6.3 (Greedy completion by one infinitesimal neuron). The
neuron in the previous proposition can be chosen to have arbitrarily small input
weights.

Proof: This is straightforward, as, following a previous remark, the neurons found
to collectively decrease the loss can be supposed to all have arbitrarily small input
weights.

This detail is important in that our approach is based on the tangent space
of the function f and thus manipulates infinitesimal quantities. Our optimization
problem indeed relies on the linearization of the activation function by requiring
the added neuron to have infinitely small input weights, to make the problem easier
to solve. This proposition confirms that such neuron exists indeed.

Correlations and higher orders. Note that, as a matter of fact, our approach
exploits linear correlations between inputs of a layer and desired output varia-
tions. It might happen that the loss is not minimized yet but there is no such
correlation to exploit anymore. In that case the optimization problem (3.21) will
not find neurons to add. Yet following Prop. C.6.3 there does exist a neuron
with arbitrarily small input weights that can reduce the loss. This paradox can
be explained by pushing further the Taylor expansion of that neuron output in
terms of weight amplitude (single factor ε on all of its input weights), for instance
σ(εα · x) ≃ σ(0) + σ′(0)εα · x + 1

2
σ′′(0)ε2(α · x)2 + O(ε3). Though the linear

term α · x might be uncorrelated over the dataset with desired output variation
v(x), i.e. Ex∼D[x v(x)] = 0, the quadratic term (α · x)2, or higher-order ones oth-
erwise, might be correlated with v(x). Finding neurons with such higher-order
correlations can be done by increasing accordingly the power of (α ·x) in the opti-
mization problem (3.20). Note that one could consider other function bases than
the polynomials from Taylor expansion, such as Hermite or Legendre polynomials,
for their orthogonality properties. In all cases, one does not need to solve such
problems exactly but just to find an approximate solution, i.e. a neuron improving
the loss.

Adding random neurons. Another possibility to suggest additional neurons,
when expressivity bottlenecks are detected but no correlation (up to order p) can be
exploited anymore, is to add random neurons. The first p order Taylor expansions
will show 0 correlation with desired output variation, hence no loss improvement
nor worsening, but the correlation of the p+1-th order will be non-0, with proba-
bility 1, in the spirit of random projections. Furthermore, in the spirit of common
neural network training practice, one could consider brute force combinatorics by
adding many random neurons and hoping some will be close enough to the desired
direction [Frankle and Carbin, 2018]. The difference with the usual training is that
one would perform such computationally costly searches only when and where rel-
evant, exploiting all simple information first (linear correlations in each layer).
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C.6.2 Loss decreases with a line search on a quadratic energy

Let L be a quadratic loss over Rd and g be a vector in Rd. The loss L can be
written as:

L(g) = gTQg + vTg +K (C.172)
where Q is a matrix that is supposed to be symmetric positive definite. This is
to ensure that all eigenvalues of Q are positive, hence modeling a local minimum
without a saddle point. v is a vector in Rd and K is a real constant.

For instance, the mean square loss Ex∈D
[
∥f(x)− f ∗(x)∥2S

]
, where D is a finite

dataset of N samples, f ∗ a target function, and S is a symmetric positive definite
matrix used as a metric, fits these hypotheses, considering g = (f(x1), f(x2), ...)
as a vector. Indeed this loss rewrites as

N∑
i=1

f(xi)
TSf(xi)− 2

∑
i

f ∗T (xi)Sf(xi) +K = gTQg + vTg + K (C.173)

by flattening and concatenating the vectors f(xi) and considering Q = S⊗S⊗S⊗...
the tensor product of N times the same matrix S, i.e. a diagonal-block matrix with
N identical blocks S. Note that for the standard regression with the L2 metric,
this matrix Q is just the Identity.

Starting from point g, and given a direction h ∈ Rd, the question is to perform
a line search in that direction, i.e. to optimize the factor λ ∈ R in order to minimize
L(g + λh).

Developing that expression, it follows that:

L(g+λh) = (g+λh)TQ (g+λh)+vT (g+λh)+K = λ2hTQh+λ(2hTQg+vTh)+L(g)
(C.174)

which is a second-order polynomial in λ with a positive quadratic coefficient. Note
that the linear coefficient is hT∇gL(g), where ∇gL(g) = 2Qg + v is the gradient
of L at point g. The unique minimum of the polynomial in λ is then:

λ∗ = −1

2

hT∇gL(g)
hTQh

(C.175)

which leads to

min
λ
L(g + λh) = λ∗2hTQh+ λ∗hT∇gL(g) + L(g) (C.176)

= L(g)− 1

4

(
hT∇gL(g)

)2
hTQh

(C.177)

= L(g)− 1

4

〈
h

∥h∥Q

∣∣∣∣∇Q
g L(g)

〉2

Q

. (C.178)

Thus the loss gain obtained by a line search in a direction h is quadratic in the
angle between that direction and the gradient of the loss, in the sense of the Q norm
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(and it is also quadratic in the norm of the gradient). Note that inner products
with the gradient do not depend on the metric, in the sense that ⟨h | ∇gL(g) ⟩L2 =〈
h | ∇S

gL(g)
〉
S
∀h for any metric S, i.e. any symmetric definite positive matrix S,

associated to the norm ∥h∥2S = hTSh and to the gradient ∇S
gL(g) = S−1∇L2

g L(g).
In the case of a standard L2 regression this boils down to:

min
λ
∥g + λh∥2L2 = ∥g∥2 −

〈
h

∥h∥

∣∣∣∣ g〉2

L2

(C.179)

i.e. considering L(f) := Ex∈D
[
∥f(x)− f ∗(x)∥2

]
:

min
λ
L(f + λh) = L(f)−

〈
h

∥h∥

∣∣∣∣ f ∗ − f

〉2

L2

= L(f)− Ex∈D [ (f ∗ − f)h ]2

Ex∈D
[
∥h∥2

] .

(C.180)
A result that is useful in the next sections.

C.6.3 Expected loss gain with a line search in a random direction

Using Appendix C.6.2 above, the loss gain when performing a line search on
a quadratic loss is quadratic in the angle α =

〈
V (X)

∥V (X)∥

∣∣∣ Vgoal(X)

∥Vgoal(X)∥

〉
L2

between the
random search direction V (X) and the gradient Vgoal(X).

This angle has average 0 and is of standard deviation 1
nd

, as described in Sec-
tion 5.3.2. The loss gain is thus of the order of magnitude of 1

d
in the best case

(single-sample minibatch).

C.6.4 Exponential convergence to 0 training error

Considering a regression to a target f ∗ with the quadratic loss, the function
f represented by the current neural network (fully-connected, one hidden layer,
with ReLU activation function) can be improved to reach 0 loss by an addition of
n neurons (hi)1⩽i⩽n, with n is the dataset size, using Zhang et al. [2017]. Unfortu-
nately there is no guarantee that if one adds each of these neurons one by one, the
loss decreases each time. It will be proved that one of these neurons does decrease
the loss, and it will be quantified by how much, relying on the explicit construction
in Zhang et al. [2017]. This decrease will actually be a constant factor of the loss,
thus leading to exponential convergence towards the target f ∗ on the training set.

As in the proof of Proposition C.6.2 in Appendix C.6, at least one of the added
neurons satisfies that its inner product with the gradient direction is at least 1/n.
While one could consequently hope for a loss gain in O( 1

n
), one has to see that this

decrease would be the one of a gradient step, which is multiplied by a step size η,
and asks for multiple steps to be done. Instead in TINY approach, a line search
is performed over the direction of the new neuron. In both cases (line search or
multiple small gradient steps), one has to take into account at least order-2 changes
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of the loss to compute the line search or estimate suitable η and/or its associated
number of steps. Luckily in our case of least square regression, the loss is exactly
equal to its second order Taylor development, and all following computations are
exact.

Consider the mean square regression loss L(f) = Ex∈D
[
∥f(x)− f ∗(x)∥2S

]
,

where D is a finite training dataset of N samples. Its functional gradient ∇L(f)
at point f is 2(f − f ∗), which is proportional to the optimal change to add to f ,
that is, f ∗ − f . The n neurons (hi)1⩽i⩽n to be added to f following Zhang et al.
[2017] satisfy

∑
i hi = f ∗ − f = −1

2
∇L(f). Thus〈∑

i

hi

∣∣∣∣∣ f ∗ − f

〉
L2

= ∥f ∗ − f∥2L2 = L(f) . (C.181)

Then like in the proof of C.6.2 it is used that the maximum is greater or equal
to the mean to get that there exists a neuron hi that satisfies:

⟨hi| f ∗ − f⟩L2 ⩾ L(f)/n . (C.182)

By applying Appendix C.6.2 one obtains that the new loss after line search
into the direction of hi yields:

min
λ
L(f +λhi) = L(f) − ⟨hi | f ∗ − f⟩2L2

∥hi∥2
⩽ L(f)×

(
1− L(f)

n2∥hi∥2

)
. (C.183)

From the particular construction in Zhang et al. [2017] it is possible to bound

the square norm of the neuron ∥hi∥2 by n d′
(

dM
dm

)2
L(f), where dM is related to

the maximum distance between 2 points in the dataset, dm is another geometric
quantity related to the minimum distance, and d′ is the network output dimension.
To ease the reading of this proof, the construction of this bound is deferred to the
next section, Appendix C.6.5.

Then the loss at each neuron addition decreases by a factor which is at least

γ = 1 − 1
n3d′

(
dm
dM

)2
< 1. This factor is a constant, as it is a bound that depends

only on the geometry of the dataset (not on f).
Thus it is possible to decrease the loss exponentially fast with the number t of

added neurons, i.e. L(ft) ⩽ γtL(f), towards 0 training loss, and this in a greedy
way, that is, by adding neuron one by one, with the property that each neuron
addition decreases the loss.

Note that, in the proof of Zhang et al. [2017], the added neurons could be
chosen to have arbitrarily small input weights. This corresponds to choosing a
with small norm instead of unit norm in Equation C.184.

The number of neuron additions expected to reach good performance according
to this bound is in the order of magnitude of n3, which is to be compared to n
(number of neurons needed to overfit the dataset, without the constraint that
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each addition decreases the loss). This bound might be improved using other
constructions than Zhang et al. [2017], though with this proof the bound cannot
be better than n2 (supposing ∥hi∥ can be made not to depend on n).

Note also that with ReLU activation functions, all points that are on the convex
hull of the dataset (which is necessarily the case of all points if the input dimension
is higher that the number of points) can easily in turn be perfectly predicted (0
loss) by just one neuron addition each (without changing the outputs for the other
points), by choosing an hyperplane that separates the current convex hull point
from the rest of the dataset, and setting a ReLU neuron in that direction.

C.6.5 Bound on the norm of the neurons

Here it is proved that the neurons obtained by Zhang et al. [2017] can be chosen

so as to bound the square norm of any neuron ∥hi∥2 by n d′
(

dM
dm

)2
L(f), where

dM is related to the maximum distance between 2 points in the dataset, and dm
is another geometric quantity related to the minimum distance. For the sake of
simplicity, let first consider the case where the output dimension is d′ = 1.

In Zhang et al. [2017], the n neurons are obtained by solving y = Aw, where
y = (y1, y2...) is the target function (here (f ∗ − f) at each xj), A is the matrix
given by Ajk = ReLU(a · xj − bk), representing neuron activations, and a is any
vector that separates the dataset points, i.e. a ·xj ̸= a ·xj′ ∀j ̸= j′, that is, a could
be almost any vector in Rd (in the sense of random projections, that is, the set of
vectors that do not satisfy this is of measure 0).

Here a particular unit direction a is picked, one that maximizes the distance
between any two samples after projection:

a ∈ argmax
∥a∥=1

min
j,j′
|a · (xj − xj′)| (C.184)

and let us denote d′m the associated value: d′m = minj,j′ |a · (xj − xj′)| for that a.
Note that d′m ⩽ minj,j′ ∥xj − xj′∥ and that it depends only on the training set.
The quantity d′m is likely to be also lower-bounded (over all possible datasets) by
minj,j′ ∥xj − xj′∥ times a factor depending on the embedding dimension d and the
number of points n.

Now, let us sort the samples according to increasing a · xj, that is, let us re-
index the samples such that (a · xj) now grows with j. By definition of a, the
difference between any two consecutive a · xj is at least d′m.

Choose biases bj = a · xj − d′m + ε for some very small ε. The neurons are
then defined as hk(x) = wkReLU(a · x − bk). The induced activation matrix
Ajk = ReLU(a · xj − bk) then satisfies ∀j < k;Ajk = 0 and ∀j ⩾ k;Ajk ⩾ d′m − ε.
The matrix A is lower triangular with diagonal elements above dm := d′m−ε, hence
invertible. Recall that y = Aw.

Consequently, w = A−1y, and hence ∥w∥2 ⩽ |||A−1|||2 ∥y∥2, that is,

∥w∥2 ⩽ 1

d2m
L(f) (C.185)
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as the target y is the vector f ∗ − f in our case. Consequently, for any neuron hi,
one has:

w2
i ⩽

1

d2m
L(f) . (C.186)

As the norm of the neuron is ∥hi∥2 = w2
i

∑
j A

2
ji, one still has to bound the activities

Aji = ReLU(a · xj − bi). As a was chosen a unit direction, the values a · xj span a
domain smaller than the diameter of the dataset D: |a · (xj − xj′)| ⩽ ∥xj − xj′∥ ⩽
diam(D) ∀j, j′. Hence all values ∀i, j, |Aij| = |a · xi − bj| = |a · xi − a · xj + dm| <
dM := diam(D)+dm. Note that dM depends only the dataset geometry, as for dm.

It follows that :

∥hi∥2 = w2
i

∑
j

A2
ji ⩽ n

d2M
d2m
L(f) (C.187)

which ends the proof.
For higher output dimensions d′, one vector w of output weights is estimated

per dimension, independently, leading to the same bound for each dimension. The
square norms of neurons are summed over all dimensions and thus multiplied by
at most d′.

C.6.6 Reaching 0 training error in n neuron additions by overfit-
ting each dataset sample in turn

If one allows updating already existing output weights at the same time as
one adds new neurons, then it is possible to reach 0 training error in only n steps
(where n is the size of the dataset) while decreasing the loss at each addition.

This scenario is closer to the one that is considered with TINY, as the optimal
update of existing weights is computed inside the layer, as a byproduct of new
neuron estimation, and apply them.

However the existence proof here follows a very different way to create new
neurons, tailored to obtain a constructive proof, and inspired by the previous
section. See Appendix C.6.7 for another, more generic proof, applicable to a wide
range of growth methods.

Here one can consider the same approach as in Appendix C.6.5 above, but
introducing neurons one by one instead of n neurons at once. After computing a
and the biases bj, thus forming the activity matrix A, only the last neuron hn is
added. The activity of this neuron is 0 for all input samples xj except for the last
one, for which it is Ann > 0. Thus, the neuron hn separates the sample xn from
the rest of the dataset, and it is easy to find wn so that the loss gets to 0 on that
training sample, without changing the outputs for other samples.

Similarly, one can then add neuron hn−1, which is active only for samples xn−1

and xn. However designing wn−1 so that the loss becomes 0 at point xn−1 disturbs
the output for point xn (and for that point only). Luckily if one allows updating
wn then there exists a (unique) solution (wn−1, wn) to achieve 0 loss at both points.
This is done exactly as previously, by solving y = Aw, but considering only the
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last 2 lines and rows of A, leading to a smaller 2 × 2 system which is also lower-
triangular with positive diagonal.

Proceeding iteratively this way adds neuron one by one in a way that sends
each time one more sample to 0 loss. Thus adding n neurons is sufficient to achieve
0 loss on the full training set, and this in a way that each time decreases the loss.

Note that updating existing output weights wi while adding a new neuron, to
decrease optimally the loss, is actually what TINY does. However, the construction
in this Appendix completely overfits each sample in turn, by design, without being
able to generalize to new test points. On the opposite, TINY exploits correlations
over the whole dataset to extract the main tendencies.

C.6.7 TINY reaches 0 training error in n neuron additions

It is now shown that the TINY approach, as well as any other suitable greedy
growth method, implemented within the right optimization procedure, reaches 0
training error in at most n steps (where n is the size of the dataset), almost surely.

Before stating it formally, the optimization protocol is introduced, growth com-
pletion and a probability measure over activation functions.

Optimization protocol. For this let consider the following optimization pro-
tocol conditions, that has to be applied at least during the last, n-th addition
step:

• a full batch approach,

• when adding new neurons, also compute and add the optimal moves of
already existing parameters (i.e. of output weights w).

The first point is to ensure that all dataset samples will be taken into account in the
loss during the n-th update. Otherwise, for instance if using minibatches instead,
the optimization of output weights w will not be able to overfit the training loss.

The second point is to make sure that, after update, the output weights w will
be optimal for the training loss. Note that in the mean square regression case, this
is easy to do, as the loss is quadratic in w: the optimal move (leading to the global
optimum f ∗) can be obtained by line search over the natural gradient (which is
obtained for free as a by-product of TINY’s projection of Vgoal, and is proportional
to f ∗ − f). This is precisely what TINY does in practice when training networks
(except when comparing with other methods and using their own protocol).

Growth completion. For this proof to make sense, the growth method needs
to be able to perform n neuron additions, if it has not reached 0 training loss
before. A counter-example would be a growth method that gets stuck at a place
where the training loss is not 0 while being unable to propose new neuron to add.
In the case of TINY, this can happen when no correlation between inputs xi and
desired output variations f ∗(xi) − f(xi) can be found anymore. To prevent this,
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one can choose any auxiliary method to add neurons in such cases, for instance
random directions, solutions of higher-order expressivity bottleneck formulations
using further developments of the activation function, or locally optimal neurons
found by gradient descent. Some auxiliary methods are guaranteed to further
decrease the loss by a neuron addition (cf. Appendices C.6.2, C.6.3, C.6.4), while
any other one is guaranteed not to increase the loss if combined with a line search
along that neuron direction.

Let name completed-TINY the completion of TINY by any such auxiliary
method.

Activation function. For technical reasons, the result will stand almost surely
only, depending on the invertibility of a certain matrix, namely, the activation
matrix A, defined as Aij = σ(vj · xi + bj), indexed by samples i and neurons j.

Generally speaking, kernels induced by neurons kj : x 7→ σ(vj ·x+bj) form free
families, in the sense that they are linearly independent (to the notable exception
of the linear kernel). This linear independency means that a linear combination
of kernels cannot be equal, as a function, to another kernel with different parame-
ters. Equality is to be understood as for all possible points x ever. However here
the functions will only be evaluated at a finite number n of points (the dataset
samples), therefore linear independence will be considered among the rows of the
activation matrix A. This notion of linear dependence is much weaker: kernels
might form a free family as functions but be linearly dependent once restricted
to the dataset samples, by mere chance. While this is not likely (over dataset
samples), this is not impossible in general (though of measure 0), and it is difficult
to express an explicit, simple condition on the activation function to be sure that
the activation matrix A is always invertible (up to slight changes of parameters).
Thus instead results will be expressed almost surely over activation functions and
neuron parameters.

For most activation functions in the space of smooth functions, the activation
matrix A will be invertible almost surely over all possible datasets. In the unlucky
case where the matrix is not invertible, an infinitesimal move of the neurons’ pa-
rameters will be sufficient to make it invertible. For some activation functions,
however, such as linear or piecewise-linear ones (e.g., ReLU), the matrix might
remain non-invertible over a wide range of parameter variations (unless further
assumptions are made on the neurons added by the growth process). Yet, in
such cases, slight perturbations of the activation function (i.e., choosing another,
smooth, activation function, arbitrarily close to the original one) will yield invert-
ibility.

To properly define "almost surely" regarding activation functions, let us restrict
the activation function σ to belong to the space P of polynomials of order at least
n2, that is:

σ(x) =
K∑
k=0

γk x
k (C.188)
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with n2 ⩽ K < +∞, and non-0 highest-order amplitude γK ̸= 0. This set P is
dense in the set of all continuous functions over the set Ω = [−rM , rM ]d which is
a hypercube of sufficient radius rM to cover all samples from the given dataset.
One can define probability distributions over P, for instance consider the density

p(σ) = α
K2

∏K
k=0

e−γ2k√
2π

with a factor α =
(

π2

6
−
∑

k<n2
1
k2

)−1

to normalize the dis-
tribution, and where K is the order of the polynomial and thus depends on σ.
This density is continuous in the space of parameters γk (though not continuous
in the usual functional metric spaces). Note that the decomposition of any σ ∈ P
as a finite-order polynomial is unique, as monomials of different orders are linearly
independent.

Let now state the following lemma (that is proved later):

Lemma C.6.4 (Invertibility of the activation matrix). Let D = {xi, 1 ⩽
i ⩽ n} be a dataset of n distinct points, and let σ : R → R be a function in
P, that is, a polynomial of order at least n2. Then with probability 1 over func-
tion and neuron parameters (γk), (vj) and (bj), the activity matrix A defined by
Aij = σ(vj · xi + bj) is full rank.

and the following proposition:

Proposition C.6.5 (Reaching 0 training error in at most n neuron additions).
Under the assumptions above (polynomial activation function of order ⩾ n2, full-
batch optimization and computation of the optimal moves of already existing pa-
rameters), completed-TINY reaches 0 training error in at most n neuron additions
almost surely.

Proof: If the growth method reaches 0 training error before n neuron additions,
the proof is done. Otherwise, let us consider the n-th neuron addition. It will be
shown in Lemma C.6.4 that the activity matrix A, defined by Aij = σ(vj ·xi+ bj),
indexed by samples i and neurons j, is invertible. Then there exists a unique
w ∈ Rn such that Aw = f ∗, i.e.

∑
j wjσ(vj ·xi + bj) = f ∗(xi) for each point xi of

the dataset. This vector of output parameters w realizes the global minimum of
the loss over already existing weights: infw L(fv,w) = infw ∥Aw − f ∗∥2. They are
also the ones found by a natural gradient step over the loss (up to a factor 2, that
can easily be found by line search as the loss is convex). Then after that update
the training loss is exactly 0.

Note: piecewise-linear activation functions such as ReLU are not covered by
this proposition. However the result might still hold with further assumptions
over the growth process. For instance, with the method in Zhang et al. [2017],
the ReLU neurons are chosen in such a way that the matrix A is full rank by
construction.

157



Appendix C. proofs of 3

Proof: (Proof of Lemma C.6.4) Let us first show that if, unluckily, for a given
activation function σ and given parameters (vj, bj), the matrix A is not full rank,
then upon infinitesimal variation of the parameters, the matrix A becomes full
rank.

Indeed, if all pre-activities ai,j := vj · xi + bj are not distinct for all i, j, then
an infinitesimal variation of the vectors vj can make them distinct. For this, one
can see that the set of directions vj on which any two dataset points xi and xi′

have the same projection is finite (since it has to be the direction of xi − xi′ , for
a given pair of dataset samples (i, i′)) and thus of measure 0. As a consequence
with probability 1 over neuron parameters vj and bj, all pre-activities are distinct.

Now, if the matrix A is not invertible, as invertible matrices are dense in the
space of matrices, one can easily find an infinitesimal change δA to apply to A
to make it invertible. This corresponds to changing the activation function σ
accordingly at each of the n2 distinct pre-activity values. Since σ has more than
n2 parameters, this is doable. For instance, one can select the n2 first parameters
and search for a suitable variation g := (δγk)0⩽k<n2 of them by solving the linear
system S g = δA where the n2×n2 matrix S is defined by Sij,k = aki,j = (vj ·xi+bj)

k.
This matrix S is invertible because any g such that S g = 0 would induce:

∀i, j,
n2−1∑
k=0

δγk a
k
i,j = 0 (C.189)

and thus the polynomial P (x) =
∑n2−1

k=0 δγk x
k has at least n2 roots while being of

order at most n2− 1. Thus S g = 0 =⇒ g = 0 and S is invertible. Note that as
δA is infinitesimal, g = S−1 δA will be infinitesimal as well, and so is the change
brought to the activation function σ.

Consequently, the set of activation functions σ and neuron parameters (vj, bj)
for which the matrix A is full rank is dense in the set of polynomials P of order
at least n2 and of neuron parameters N.

Now, the function det : P×N→ R, ((γk)k, (vj, bj)j) 7→ detA = det (σγ(vj · xi + bj))
is smooth as a function of its input parameters (the determinant being a polyno-
mial function of the matrix coefficients). As this continuous function is non-0 on a
dense set of its inputs, the pre-image det−1{0} is closed and contains no open sub-
set. This is not yet sufficient to prove that this pre-image is of measure 0 (e.g., fat
Cantor set).

For a fixed order K, one can see this function as a polynomial of its inputs γk
and vj, bj, and conclude1 that the set of its roots is of measure 0. As a consequence,
the probability, over coefficients γk or equivalently over polynomials σ of order K,
that detA is non-0, is 1. As this stands for all K, it follows that the probability

1See for instance a proof by recurrence that roots of a polynomial are al-
ways of measure 0: https://math.stackexchange.com/questions/1920302/
the-lebesgue-measure-of-zero-set-of-a-polynomial-function-is-zero .
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that the matrix A is invertible is at least the mass of polynomials of all orders K,
i.e.
∑

k⩾n2
α
k2

= 1. Thus A is invertible with probability 1.
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D.1 module description

This section presents the class TINY, a Python module that encodes a neural
network whose architecture is to be expanded using Chapter 3.

D.2 folder description

TINYpub/
TINY.py
SOLVE_EB.py
T_S_F_N.py
UTILS.py
GLOBALS.py
define_device.py
Loader_Data_Loader.py
mes_imports.py
settings

Figure D.1: Folder TINYpub

The repository can be found in https://
gitlab.inria.fr/mverbock/tinypub and is
encoded in Python using PyTorch as a ba-
sis. It contains three folders: 1) TINYpub,
which contains the class and the theory; 2)
DEMO, which contains notebooks that grows
networks on academic datasets; and 3) Paper,
which regroups experiments comparing TINY
with classic training methods.

The class TINY is in TINY.py and has all the attributes of the class. The
file T_S_F_N.py computes the matrices S and N of theorem 3.2.3. The file
SOLVE_EB.py computes the best update and the new neurons using the matrix S
and N . The files define_device.py, Loader_Data_Loader.py and mes_imports.py,
respectively, define the type of device (CPU or GPU), load the data and import
the python packages.

The TINY class, as defined in algorithm 12, has three types of parameters.
The first type of parameters defines the training setting and is explicit. The second
category describes the starting architecture of the network with :
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- skeleton[i]: the number of neurons at layer i.
- layer_name[i] : being L for a linear layer, C for a convolutional layer, and

CB for a convolutional followed by a batch-norm layer.
- skip_connection[s] : the list of layers which are the starting point of a

skip connection for s = ’in’ or the ending point of a skip connection for s =
’out’

- activation_functions[i] : the activation function of layer i.
- skip_functions[i] : the activation function for the skip connection that

starts at layer i.

The third category is the hyperparameters of the architecture growth :

- T_j_depth : the list of indexes j at which to compute the Tj matrices of
C.2.2 (only for convolutional layers).

- lambda_method : the amplitude factor of the new neurons, if set to 0, a line
search will be performed to find the best amplitude factor.

- lambda_method_NG : the amplitude factor of the best update, if set to 0, a
line search will be performed to find the best amplitude factor.

- init_deplacement : it is used when lambda_method = 0 and is the lowest
value tested as amplitude factor when performing the line search on the new
neurons.

- init_deplacement_NG : it is used when lambda_method_NG = 0 and is the
lowest value tested as an amplitude factor when performing the line search
on the best update.

162



D.2. folder description

Algorithm 12: TINY class
Class TINY(torch.nn.Module):

def __init__(self ;
// Training parameters
batch_size: int = 128 ;
lr: float = 1e-2 ;
gradient_clip: Optional[float] = None ;
scheduler: Optional[callable] = None ;
len_train_dataset: int = 50000 ;
len_test_dataset: int = 10000 ;
loss: torch.nn.modules.loss = torch.nn.MSELoss() ;
// Starting architecture
skeleton: dict = None ;
layer_name: dict = None ;
activation_function: dict[str, torch.nn.Module] = None ;
skip_connections: dict[str, tuple[int, int]] = None ;
skip_functions: dict[int, torch.nn.Module] = None ;
init_input_x_shape: tuple[int, int, int] = (3, 32, 32) ;
// Expending the architecture
T_j_depth: Optional[list[int]] = None;
lambda_method: float = 0.;
lambda_method_NG: float = 0.;
init_deplacement: float = 1e-8;
init_deplacement_NG: Optional[float] = None;
accroissement_decay: float = 1e-3;
accroissement_decay_NG: Optional[float] = None;
exp: int = 2;
ind_lmbda_shape: int = 1000;
max_amplitude: float = 1.;
rescale: str = ’DE’;
architecture_growth: str = ’Our’;
selection_neuron: callable = UTILS.selection_neuron_seuil;
selection_NG: callable = UTILS.selection_NG_Id;
):

163



Appendix D. module description and technical details

D.3 Technical details of Figures 5.6 and 5.9

D.3.1 settings and strategy of adding

The experiments were performed on 1 GPU. The optimizer is SGD(lr = 1e−2)
with the starting batch size 32 D.4.1. At each depth l, the number of neurons nl

to be added at this depth is defined in D.1. These numbers do not depend on
the starting architecture and have been chosen such that, for a given starting
architecture, each depth will reach its final width with the same number of layer
extensions. For the initial structure s = 1/4, resp. 1/64, the number of layer
extensions is set to 16, resp. 21, such that at depth 2 (named Conv2 in Table D.2),
n2 = (Sizefinal2 −Sizestart2 )/nb of layer extensions = (64−16)/16 = (64−1)/21 = 3.
The initial architecture is described in Table D.2.

depth l Conv2 Conv3 Conv5 Conv6 Conv8 Conv9 Conv11 Conv12
nl 3 3 6 6 12 12 24 24

Table D.1: Number of neurons to add per layer. The depth is identified by its
name on Table D.2.

D.4 Batch size to estimate the new neuron and the best
update

This section studies the variance of the matrices δWl
∗and S−1N computed

using a minibatch of n samples, seeing the samples as random variables, and the
matrices computed as estimators of the true matrices one would obtain by con-
sidering the full distribution of samples. Those two matrices are the solutions of
the multiple linear regression problems defined in Equation (3.17) and in Equa-
tion (3.27), as we are trying to regress the desired update noted Y onto the span
of the activities noted X. The following setting is supposed :

Y ∼ AX + ε, ε ∼ N (0, σ2), E[ε|X] = 0 (D.1)

where the (Xi, Yi) are i.i.d. and A is the oracle for δWl
∗ or matrix S−1N . If Y

is multidimensional, the total variance of our estimator can be seen as the sum of
the variances of the estimator on each dimension of Y .

It is now supposed that Y ∈ R and note Â := Y XT (XXT )+ the solution of
D.1. First, one can remark that ÂX = Y P with P = XT (XXT )+X ∈ R(n, n)
. It follows that when n ≤ p, almost surely it follows that rk(P ) = n and
Y P = Y , resulting in a zero expressivity bottleneck for that specific mini-batch,
i.e. Y = ÂX. In practice, n < p is not considered as the solution (δW or A,Ω)
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would overfit a specific mini-batch and would increase the expressivity bottleneck
for the rest of the dataset.

It is now supposed that n > p, almost surely it follows that rk(P ) = p and
Y P ̸= Y . For the variance of the estimator Â ∈ Rp, almost surely it follows that
XXT is invertible and its inverse is noted (XX)−1. Taking the expectation on
variable ε,

It follows that cov(Â) = σ2(XXT )−1. If n is large, and if matrix 1
n
XXT → Q,

with Q non-singular, then, asymptotically, it follows that Â ∼ N (A, σ2Q−1

n
),

which is equivalent to (Â − A)
√
n
σ
Q1/2 ∼ N (0, I). Then ||(Â − A)

√
n
σ
Q1/2||2 ∼

χ2(k) where k is the dimension of X. It follows that E
[
||(Â−A)Q1/2||2

]
= kσ2

n

and as Q1/2Q1/2T is positive definite, as a conclusion (Â) ⩽ kσ2

nλmin(Q)
.

In practice, one can aim at keeping the variance of our estimators stable during
architecture growth. To ensure this, the batch size n can be chosen to make
the bound constant. With the notations defined in Figure 5.1, one can estimate
a matrix of size k ← (SW )2. For n images, as each input sample contains P
quantities, and that each is a realization of the random variable X (total nP
variables), in total n ← nP data points for the estimation of the best neuron.
Hence to add new neurons with a (asymptotically) fixed variance, batch size

n ∝ (SW )2

P

is used.
For convolutional layers, n = 0.001 × (SW )2

P
× 2k (Figure 5.6) and n = 0.01 ×

(SW )2

P
× 2k (Figure 5.9) is chosen, where k is equal to

√
32×32

P
, and this 2k fac-

tor is found empirically to somehow account for the variances of the estimators
even when the same input is used multiple times, as are the {Bt

i,j}j∈P in Equa-
tion (C.23).

D.4.1 Batch size for learning

The batch size for gradient descent is adjusted as follows: the batch size is set
to bt=0 = 32 at the beginning of each experiment, and it is scheduled to increase as
the square root of the complexity of the model (i.e. number of parameters). If at
time t the network has complexity Ct parameters, then at time t+ 1 the training
batch size is equal to bt+1 = bt ×

√
Ct+1

Ct
.

D.4.2 Normalization for 5.6,5.7 and D.4

For the GradMax method of Figures 5.6 and D.4, before adding the new neu-
rons to the architecture, the outgoing weight of the new neurons are normalized
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according to Evci et al. [2022], i.e. :

α∗
k ← 0 (D.2)

for Figures 5.6 and 5.7 ω∗
k ← ω∗

k ×
10−3√

||(ω∗
j )

nd
j=1||22/nd

(D.3)

for Figure D.4 ω∗
k ← ω∗

k ×

√
10−3

||(ω∗
j )

nd
j=1||22/nd

(D.4)

For TINY method of both figures, the previous normalization process is mimicked
by normalizing the in and out going weights by their norms and multiplying them
by
√
10−3, i.e. :

αk ← α∗
k ×

√
10−3

||(α∗
j )

nd
j=1||22/nd

(D.5)

ωk ← ω∗
k ×

√
10−3

||(ω∗
j )

nd
j=1||22/nd

(D.6)
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Figure D.2: Accuracy and number of parameters during architecture growth for
methods TINY and GradMax as a function of the gradient step. Mean and stan-
dard deviation for four independent runs.
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Figure D.3: Accuracy curves as a function of the number of epochs during extra
training for TINY (top plot) and GradMax (bottom plot) on four independent
runs.
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Figure D.4: Accuracy on test split of as a function of the number of parameters
during architecture growth from ResNet1/64 to ResNet18. The normalization
for GradMax is

√
10−3.
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Table D.2: Initial and final architecture for the models of Figure 5.6. Numbers in
color indicate where the methods were allowed to add neurons (middle of ResNet
blocks). In blue the initial structure for the model 1/64 and in green the initial
structure for the model 1/4, i.e., 1|16 indicates that the model 1/64 started with
1 neuron at this layer while the model 1/4 started with 16 neurons at the same
layer. In red are indicated the final number of neuron at this layer.

ResNet18

name Output size layers (kernel=(3,3), padd.=1)

Conv 1 32× 32× 64
[
3× 3,

]
Conv 2 32× 32× 64

3× 3, 64

3× 3, 1|16 → 64

3× 3, 1|16 → 64

3× 3, 64


Conv 3 32× 32× 64

3× 3, 64

3× 3, 1|16 → 64

3× 3, 1|16 → 64

3× 3, 64


Conv 4 16× 16× 64

[
3× 3, 128

]
Conv 5 16× 16× 128

3× 3, 128

3× 3, 2|32 → 128

3× 3, 2|32 → 128

3× 3, 128


Conv 6 16× 16× 128

3× 3, 128

3× 3, 2|32 → 128

3× 3, 2|32 → 128

3× 3, 128


Conv 7 8× 8× 256

[
3× 3, 256

]
Conv 8 8× 8× 256

3× 3, 256

3× 3, 4|64 → 256

3× 3, 4|64 → 256

3× 3, 256


Conv 9 8× 8× 256

3× 3, 256

3× 3, 4|64 → 256

3× 3, 4|64 → 256

3× 3, 256


Conv 10 4× 4× 512

[
3× 3, 512

]
Conv 11 4× 4× 512

3× 3, 512

3× 3, 8|128 → 512

3× 3, 8|128 → 512

3× 3, 512


Conv 12 4× 4× 512

3× 3, 512

3× 3, 8|128 → 512

3× 3, 8|128 → 512

3× 3, 512


AvgPool2d 1× 1× 512

FC 1 100 512× 100

SoftMax 100
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∆t = 1
Baseline

TINY GradMax

s = 1/64
68.1± 0.5 57.2± 0.3

72.8± 0.3 5∗
68.7± 0.6 5∗ 57.7± 0.3 3∗

Table D.3: Final accuracy on test split of ResNet18 of D.4 after the architecture
growth (grey) and after convergence (blue). The number of stars indicates the
multiple of 50 epochs needed to achieve convergence. With the starting architec-
ture ResNet1/64 and ∆t = 1 the method TINY achieves 68.1 ± 0.5 on test split
after its growth and it reaches 68.7± 0.6 5∗after ∗ := 5× 50 epochs.
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